Modelat Estadístic Avançat

Esteu aquí

Crèdits
6
Tipus
Complementària d'especialitat (Ciència de les Dades)
Requisits
Aquesta assignatura no té requisits, però té capacitats prèvies
Departament
EIO;DAC
L'assignatura fa un recorregut al llarg de diferents models estadístics de regressió: regressió lineal simple i múltiple, regressió paramètrica no-lineal, model lineal generalitzat,regressió no paramètrica, regressió no paramètrica generalitzada. Es fa èmfasi en la selecció i validació dels models. Una part fonamental del curs és l'estudi de casos reals, tant per part dels professors com per part dels estudiants a les tasques programades setmanalment.

Professors

Responsable

  • Jose Antonio Sánchez Espigares ( )
  • Pedro Delicado Useros ( )

Hores setmanals

Teoria
3
Problemes
0
Laboratori
0
Aprenentatge dirigit
0
Aprenentatge autònom
7

Competències

Competències Tècniques Generals

Genèriques

  • CG3 - Capacitat per al modelatge matemàtic, càlcul i disseny experimental en centres tecnològics i d'enginyeria d'empresa, particularment en tasques de recerca i innovació en tots els àmbits de la Informàtica.

Competències Transversals

ús solvent dels recursos d'informació

  • CTR4 - Gestionar l'adquisició, l'estructuració, l'anàlisi i la visualització de dades i d'informació de l'àmbit de l'enginyeria informàtica, i valorar de forma crítica els resultats d'aquesta gestió.

Actitud adequada davant el treball

  • CTR5 - Tenir motivació per a la realització professional i per a afrontar nous reptes, tenir una visió àmplia de les possibilitats de la carrera professional en l'àmbit de l'enginyeria en informàtica. Sentir-se motivat per la qualitat i la millora contínua, i actuar amb rigor en el desenvolupament professional. Capacitat d'adaptació als canvis organitzatius o tecnològics. Capacitat de treballar en situacions de carència d'informació i/o amb restriccions temporals i/o de recursos.

Raonament

  • CTR6 - Capacitat de raonament crític, lògic i matemàtic. Capacitat de resoldre problemes en la seva àrea d'estudi. Capacitat d'abstracció: capacitat de crear i utilitzar models que reflecteixin situacions reals. Capacitat de dissenyar i realitzar experiments senzills, i analitzar-ne i interpretar-ne els resultats. Capacitat d'anàlisi, de síntesi i d'avaluació.

Competències Tècniques de cada especialitat

Específiques comunes

  • CEC2 - Capacitat per al modelatge matemàtic, càlcul i disseny experimental en centres tecnològics i d'enginyeria d'empresa, particularment en tasques de recerca i innovació en tots els àmbits de la Informàtica.

Objectius

  1. Al final del curs l'estudiant serà capaç de proposar i estimar models de regressió lineal simples i múltiples. També podrà interpretar els models estimats i validar-los.
    Competències relacionades: CG3, CEC2, CTR4, CTR6,
  2. Al final del curs l'estudiant serà capaç de proposar, estimar, interpretar i validar models lineals generalitzats.
    Competències relacionades: CG3, CEC2, CTR4, CTR6,
  3. Al final del curs l'estudiant serà capaç de proposar, estimar, interpretar i validar versions no paramètriques dels models lineals de regressió i dels models lineals generalitzats.
    Competències relacionades: CG3, CEC2, CTR4, CTR5, CTR6,
  4. Al final del curs l'alumne coneixerà adequadament la forma de triar els paràmetres de suavitzat que en models de regressió no paramètrics controlen l'equilibri entre bon ajust a la mostra observada i bona generalització.
    Competències relacionades: CG3, CEC2, CTR4, CTR5, CTR6,
  5. Al final de curs l'alumne, enfrontat a un problema real de modelització i/o predicció, sabrà triar el model de regressió més adequat (paramètric, no paramètric o semiparamétrico).
    Competències relacionades: CG3, CEC2, CTR4, CTR5, CTR6,

Continguts

  1. Models paramètrics
    1. Introducció. Models deterministes i models estadístics. Models paramètrics, no paramètrics i semiparamètrics. La construcció de models estadístics. Exemples. Software.

    2: Models lineals normals. Descripció del model lineal normal. Estimació per mínims quadrats. Taula ANOVA. Inferència. Validació del model. L'ús de variables explicatives categòriques. Selecció de model. Predicció. Interpretació de la model i col·linealitat. Regressió robusta i detecció de valors atípics. Model no lineal normal.

    3. Models lineals generalitzats. Descripció dels models lineals generalitzats. Models per a la variable de resposta binària. Models per a dades de recompte i les taules de contingència. Models per a dades de resposta de temps de vida. Estimació per màxima versemblança i per mitjà de l'estadístic Xi^2. Inferència. Validació del model.

    4. Models bayesians. Inferència Freqüentista i inferència basada en la funció de versemblança. Què és un model bayesià? Distribució a posteriori. Distribució predictiva a priori distribució predictiva a posteriori. La selecció d'una distribució a priori. Inferència bayesiana.
  2. Models no paramètrics
    1. Model de regressió no paramètrica. Introducció al modelatge no paramètric. Regressió polinòmica local. El trade-off entre biaix i variància. Nuclis. Suavitzadors lineals. Elecció del grau del polinomi local. Elecció del paràmetre de suavitzat: validació creuada, mètode plug-in, finestres variables.

    2. Model de regressió no paramètrica generalitzat. Regressió no paramètrica amb resposta binària. Model de regressió no paramètrica generalitzat. Estimació per màxima versemblança local.

    3. Inferència en la regressió no paramètrica. Bandes de variabilitat. Proves d'absència d'efectes. Prova d'un model paramètric. Comparació de corbes.

    4. Spline suavitzador. Ajust per mínims quadrats penalitzats de la regressió no paramètrica. Splines cúbics i interpolació. Suavitzat mitjançant splines. B-splines i P-splines. Regressió spline. Ajust de models de regressió no paramètrics generalitzats, mitjançant splines.

    5. Models additius generalitzats i models semiparamètrics. Regressió múltiple no paramètrica. La maledicció de la dimensionalitat. Models additius. Models additius generalitzats. Models semiparamètrics.

Activitats

Activitat Acte avaluatiu


Desenvolupament del Tema 1 (models paramètrics de regressió) a classe

Desenvolupament del Tema 1 (models paramètrics de regressió) a classe
Objectius: 1 2 5
Continguts:
Teoria
22.5h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
52.5h

Presentació del Tema 2 (models de regressió no paramètrica) a classe

Presentació del Tema 2 (models de regressió no paramètrica) a classe
Objectius: 3 4 5
Continguts:
Teoria
22.5h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
52.5h

Metodologia docent

Hi ha una sessió setmanal de 3 hores. Les 2 primeres hores es dediquen a la presentació, per part del professor, dels continguts teòrics de l'assignatura. L'última hora es dedica a posar en pràctica aquests continguts: cada alumne té a classe el seu ordinador portàtil i realitza les tasques que el professor proposa.

Cada sessió finalitza amb la proposta d'una feina als alumnes que han de lliurar resolta la següent sessió.

Mètode d'avaluació

S'assignaran tasques per fer a casa. La nota de les tasques valdrà el 50% de la nota final.

Hi haurà un examen de la primera part de l'assignatura, fet a la setmana de parcials, i un altre examen de la segona part fet com examen final, tots dos amb un pes del 25%.

Nota del curs = 0.5 * Nota Tasques + 0.25 * Nota Examen 1a part + 0.25 * Nota Examen 2a part

Bibliografia

Bàsica:

Capacitats prèvies

No especificades

Addenda

Continguts

NO HI HA CANVIS RESPECTE LA INFORMACIÓ PUBLICADA A LA GUIA DOCENT NO CHANGES REGARDING THE INFORMATION PUBLISHED IN THE TEACHING GUIDE

Metodologia docent

NO HI HA CANVIS RESPECTE LA INFORMACIÓ PUBLICADA A LA GUIA DOCENT NO CHANGES REGARDING THE INFORMATION PUBLISHED IN THE TEACHING GUIDE

Mètode d'avaluació

NO HI HA CANVIS RESPECTE LA INFORMACIÓ PUBLICADA A LA GUIA DOCENT NO CHANGES REGARDING THE INFORMATION PUBLISHED IN THE TEACHING GUIDE

Pla de contingència

En cas de no poder fer classes presencials, es faran classes on-line o vídeos per a cada sessió. En cas de no poder fer examens presencials, es faran examens on-line. In case of not being able to do face-to-face classes, there will be online classes or videos for each session. In case of not being able to do face-to-face exams, online exams will be done.