Aprenentatge Automàtic

Esteu aquí

Crèdits
6
Tipus
Complementària d'especialitat (Computació)
Requisits
  • Prerequisit: PE
  • Corequisit: PROP
Departament
CS
L'objectiu de l'aprenentatge automàtic (machine learning en anglès) és el desenvolupament de teories, tècniques i algorismes que permetin a un sistema modificar el seu comportament a través de la inferència inductiva. Aquesta inferència està basada en l'observació de dades que representen informació incompleta sobre un procés o fenomen estadístic. L'aprenentatge automàtic és un punt de trobada de diferents disciplines: l'estadística, la intel•ligència artificial, la programació i l'optimització, entre d'altres.

L'assignatura es divideix en tres parts conceptuals, corresponents a tres tipus de problemes fonamentals: l'aprenentatge supervisat (regressió i classificació), no supervisat (clustering) i semi-supervisat (per reforç i transductiu). Les tècniques de modelat que s'estudien inclouen les xarxes neuronals artificials i les màquines de vectors suport. Com objectiu paral•lel està la familiarització amb l'R, un potent entorn de computació basat en programari lliure, així com aprendre a dissenyar solucions pràctiques en problemes difícils de resoldre de manera directa.

Professors

Responsable

  • Luis Antonio Belanche Muñoz ( )

Altres

  • Javier Béjar Alonso ( )

Hores setmanals

Teoria
2
Problemes
1
Laboratori
1
Aprenentatge dirigit
0.4
Aprenentatge autònom
5.6

Competències

Competències Transversals

Comunicació eficaç oral i escrita

  • G4 - Comunicar de forma oral i escrita amb altres persones coneixements, procediments, resultats i idees. Participar en debats sobre temes propis de l'activitat de l'enginyer tècnic en informàtica.
    • G4.3 - Comunicar-se de manera clara i eficient en presentacions orals i escrites sobre temes complexos, adaptant-se a la situació, al tipus de públic i als objectius de la comunicació, utilitzant les estratègies i els mitjans adequats. Analitzar, valorar i respondre adequadament a les preguntes de l'auditori.

Competències Tècniques de cada especialitat

Especialitat computació

  • CCO2 - Desenvolupar de forma efectiva i eficient els algorismes i el software apropiats per a resoldre problemes complexos de computació.
    • CCO2.1 - Demostrar coneixement dels fonaments, dels paradigmes i de les tècniques pròpies dels sistemes intel·ligents, i analitzar, dissenyar i construir sistemes, serveis i aplicacions informàtiques que utilitzin aquestes tècniques en qualsevol àmbit d'aplicació.
    • CCO2.2 - Capacitat per a adquirir, obtenir, formalitzar i representar el coneixement humà d'una forma computable per a la resolució de problemes mitjançant un sistema informàtic en qualsevol àmbit d'aplicació, particularment en els que estan relacionats amb aspectes de computació, percepció i actuació en ambients o entorns intel·ligents.
    • CCO2.4 - Demostrar coneixement i desenvolupar tècniques d'aprenentatge computacional; dissenyar i implementar aplicacions i sistemes que les utilitzin, incloent les que es dediquen a l'extracció automàtica d'informació i coneixement a partir de grans volums de dades.

Objectius

  1. Formular el problema de l'aprenentatge automàtic a partir de dades, i conèixer els tipus de tasques que es poden donar
    Related competences: CCO2.1, CCO2.2,
  2. Organitzar el flux de resolució d'un problema de l'aprenentatge automàtic, analitzant les possibles opcions i elegint les més adequades al problema
    Related competences: CCO2.1, CCO2.4,
  3. Decidir, defensar i criticar una solució per a un problema d'aprenentatge automàtic, argumentant els punts forts i febles de l'apropament
    Related competences: G4.3, CCO2.1, CCO2.4,
  4. Contrastar, jutjar i interpretar un conjunt de resultats amb posterioritat a una hipòtesi sobre un problema de l'aprenentatge automàtic
    Related competences: CCO2.1, CCO2.4,
  5. Conèixer i saber aplicar tècniques de mínims quadrats per la resolució de problemes d'aprenentatge supervisats
    Related competences: CCO2.4,
  6. Conèixer i saber aplicar tècniques de xarxes neuronals mono i multicapa per la resolució de problemes d'aprenentatge supervisat
    Related competences: CCO2.2, CCO2.4,
  7. Conèixer i saber aplicar tècniques de màquines de vectors suport per la resolució de problemes d'aprenentatge supervisats
    Related competences: CCO2.4,
  8. Conèixer i formular diferents eines teòriques per l'anàlisi, estudi i descripció de sistemes d'aprenentatge automàtic
    Related competences: CCO2.4,
  9. Conèixer i saber aplicar les tècniques bàsiques per la resolució de problemes d'aprenentatge no supervisat
    Related competences: CCO2.1, CCO2.2, CCO2.4,
  10. Conèixer i saber aplicar les tècniques bàsiques per la resolució de problemes d'aprenentatge per reforç
    Related competences: CCO2.1, CCO2.2, CCO2.4,
  11. Conèixer les tècniques modernes més importants de l'aprenentatge automàtic i de l'aprenentatge computacional
    Related competences: CCO2.1,

Continguts

  1. Introducció a l'Aprenentatge Automàtic
    Informació general i conceptes bàsics. Descripció i plantejament dels problemes atacats per l'aprenentatge automàtic. Aprenentatge supervisat (regressió i classificació), no supervisat (clustering) i semi-supervisat (per reforç i transductiu). Exemples moderns d'aplicació.
  2. Aprenentatge automàtic no supervisat
    Definició i plantejament de l'aprenentatge automàtic no supervisat. Algorismes de clustering: algorisme E-M i algorisme k-means.
  3. Teoria de l'Aprenentatge automàtic supervisat
    Plantejament del problema de l'Aprenentatge Automàtic supervisat. Problemes de classificació i de regressió. Compromís biaix-variància. Sobreajust i infrajust. Cotes de generalització. Dimensió de Vapnik-Chervonenkis i complexitat d'un model. Selecció de models i selecció de les variables del model.
  4. Aprenentatge automàtic supervisat (I): problemes de classificació
    L'algorisme del Perceptró. Teorema de Novikoff. Separacions amb marges màxims. Funcions de kernel. Màquines de vectors suport per classificació. Funcions d'error i xarxes neuronals per classificació: perceptró multicapa i xarxa de funcions de base radial.
  5. Aprenentatge automàtic supervisat (II): problemes de regressió
    Mínims quadrats: métodes analítics i iteratius. Funcions d'error per regressió i xarxes neuronals multicapa: perceptró multicapa i xarxa de funcions de base radial. Màquina de vectors suport per regressió.
  6. Aprenentatge automàtic supervisat (III): combinació de models
    Bagging, boosting i ECOC. El compromís biaix/variància revisitat.
  7. Aprenentatge per reforç
    Descripció de l'aprenentatge per reforç. Processos de Markov. Equacions de Bellman. Valors i mètodes de diferències temporals. Aprenentatge Q i algorisme Sarsa. Aplicacions. Apunts sobre aprenentatge transductiu.

Activitats

Activitat Acte avaluatiu


Desenvolupament del tema 1 de l'assignatura

L'alumne rep informació general i conceptes bàsics sobre l'aprenentatge automàtic així com exemples moderns d'aplicació.
Objectius: 11 1
Continguts:
Teoria
2h
Problemes
0h
Laboratori
2h
Aprenentatge dirigit
0h
Aprenentatge autònom
6h

Desenvolupament del tema 2 de l'assignatura

L'alumne rep la teoria de l'aprenentatge automàtic no supervisat, focalitzant en algorismes de clustering.
Objectius: 2 1 9
Continguts:
Teoria
2h
Problemes
0h
Laboratori
2h
Aprenentatge dirigit
0h
Aprenentatge autònom
4h

Resolució dels problemes del tema 2 de l'assignatura

El professor planteja fins a 3 problemes relacionats amb el tema en curs i els alumnes se'ls preparen. A les classes de problemes, el professor resol dificultats, dóna orientacions cap a la solució total dels problemes i resol eventuals dubtes generals. Els alumnes treballen de nou els problemes i els entreguen.
Objectius: 3 1 8
Setmana: 2
Tipus: examen de problemes
Teoria
0h
Problemes
2h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
8h

Desenvolupament del tema 3 de l'assignatura

L'alumne rep les explicacions sobre el problema de l'Aprenentatge Automàtic supervisat, les diferències entre problemes de classificació i de regressió, el compromís biaix-variància i les nocions de sobreajust i infrajust i resta d'eines teòriques per selecció de models.
Objectius: 1 8
Continguts:
Teoria
6h
Problemes
0h
Laboratori
2h
Aprenentatge dirigit
0h
Aprenentatge autònom
4h

Resolució dels problemes del tema 3 de l'assignatura

El professor planteja fins a 3 problemes relacionats amb el tema en curs i els alumnes se'ls preparen. A les classes de problemes, el professor resol dificultats, dona orientacions i resol dubtes. Els alumnes treballen de nou els problemes i els entreguen.
Objectius: 3 4 5 6
Setmana: 5
Tipus: examen de problemes
Teoria
0h
Problemes
3h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
10h

Desenvolupament del tema 4 de l'assignatura

L'alumne rep explicaciones sobre els fonaments dels algorismes de separació per hiperplans: l'algorisme del Perceptró i la separació amb marge màxim. Se l'introdueix a les funcions de kernel i les màquines de vectors suport per classificació. Se l'introdueix a les xarxes neuronals per classificació: perceptró multicapa i xarxa de funcions de base radial.
Objectius: 11 1 6 7
Continguts:
Teoria
6h
Problemes
0h
Laboratori
2h
Aprenentatge dirigit
0h
Aprenentatge autònom
4h

Resolució dels problemes del tema 4 de l'assignatura

El professor planteja fins a 3 problemes relacionats amb el tema en curs i els alumnes se'ls preparen. A les classes de problemes, el professor resol dificultats, dona orientacions i resol dubtes. Els alumnes treballen de nou els problemes i els entreguen.
Objectius: 3 4 2 6
Setmana: 8
Tipus: examen de problemes
Teoria
0h
Problemes
3h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
10h

Desenvolupament del tema 5 de l'assignatura

L'alumne rep les explicacions sobre els mètodes per problemes de regressió: bàsicament mínims quadrats (métodes analítics i iteratius). Se l'introdueixen les funcions d'error per regressió i com adaptar les xarxes neuronals multicapa i la màquina de vectors suport en aquest cas.
Objectius: 1 5 6 7
Continguts:
Teoria
6h
Problemes
0h
Laboratori
2h
Aprenentatge dirigit
1h
Aprenentatge autònom
4h

Resolució dels problemes del tema 5 de l'assignatura

El professor planteja fins a 3 problemes relacionats amb el tema en curs i els alumnes se'ls preparen. A les classes de problemes, el professor resol dificultats, dona orientacions i resol dubtes. Els alumnes treballen de nou els problemes i els entreguen.
Objectius: 3 4 7
Setmana: 10
Tipus: examen de problemes
Teoria
0h
Problemes
3h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
10h

Desenvolupament del tema 6 de l'assignatura

L'alumne rep les explicacions de les tècniques bàsiques d'ensembles: Bagging, boosting i ECOC, i les veu a la llum del compromís biaix/variància.
Objectius: 2 11 8
Continguts:
Teoria
4h
Problemes
0h
Laboratori
2h
Aprenentatge dirigit
1h
Aprenentatge autònom
4h

Resolució dels problemes del tema 6 de l'assignatura

El professor planteja fins a 3 problemes relacionats amb el tema en curs i els alumnes se'ls preparen. A les classes de problemes, el professor resol dificultats, dona orientacions i resol dubtes. Els alumnes treballen de nou els problemes i els entreguen.
Objectius: 3 4 2 9 10
Setmana: 12
Tipus: examen de problemes
Teoria
0h
Problemes
2h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
8h

Desenvolupament del tema 7 de l'assignatura

L'alumne rep les explicacions sobre els fonaments de l'aprenentatge per reforç i les seves aplicacions; se l'introdueix breument a l'aprenentatge transductiu.
Objectius: 11 10
Continguts:
Teoria
4h
Problemes
0h
Laboratori
2h
Aprenentatge dirigit
1h
Aprenentatge autònom
4h

Resolució dels problemes del tema 7 de l'assignatura

El professor planteja fins a 3 problemes relacionats amb el tema en curs i els alumnes se'ls preparen. A les classes de problemes, el professor resol dificultats, dona orientacions i resol dubtes. Els alumnes treballen de nou els problemes i els entreguen.
Objectius: 3 4 11
Setmana: 14
Tipus: examen de problemes
Teoria
0h
Problemes
2h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
8h

Examen final


Objectius: 5 6 7 8 9 10
Setmana: 15 (Fora d'horari lectiu)
Tipus: examen final
Teoria
0h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
3h
Aprenentatge autònom
0h

Lliurament de la pràctica


Objectius: 3 4 2 5 6 7 8 9 10
Setmana: 14
Tipus: examen final
Teoria
0h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
0h

Metodologia docent

El temari s'exposa a les classes de teoria de forma molt motivada (per què s'explica) i motivadora (per què és important conèixer-lo) complementat amb molts exemples.

Les classes de teoria introdueixen tot els coneixements, les tècniques, conceptes i resultats necessaris per assolir un nivell ben fonamentat i entenidor. Aquests conceptes es posen en pràctica en les classes de problemes i en les de laboratori.

Amb anterioritat a cada classe de problemes, el professor planteja problemes relacionats amb el tema en curs i els alumnes tenen temps per poder-se'ls preparar a les hores d'AA de treball personal. A les classes de problemes (d'una hora de duració), la classe es dividirà entre varis grupets en funció del nombre d'alumnes. El professor resol dificultats, dóna orientacions i eventualment resol dubtes, donant realimentació i fent que els alumnes avancin en la ressolució. S'espera usar estratègies d'aprenentatge col·laboratiu on un o més alumnes prenen la responsabilitat de liderar el procés de resolució dels problemes, argumentant-se entre tots. Els alumnes treballen de nou els problemes i els entreguen. Aquestes entregues de problemes són continuades, uniformes en càrrega i avaluades. També s'avalua mitjançant aquesta estratègia la competència genèrica de comunicació eficaç.

A les classes de laboratori es posen en pràctica els conceptes treballats a les classes de teoria i alguns dels problemes ja treballats a les classes de problemes, usant un entorn de programació avançat i molt adequat a la filosofia de l'assignatura, com és el llenguatge R.

Les dues hores de classes de teoria es fan setmanalment. Les dues hores de classes de laboratori es fan quinzenalment. L'hora de problemes es fa setmanalment.

Hi ha un treball pràctic avaluable, que treballa un problema real a elegir pel propi estudiant i que recull i integra els coneixements i les competències de tot el curs. També s'avalua mitjançant el treball pràctic la competència genèrica de comunicació eficaç.

Mètode d'avaluació

L'assignatura pot aprovar-se mitjançant l'avaluació continuada, de la següent manera:

NProbs = Nota mitjana dels problemes realitzats durant el curs
NPract = Nota del treball pràctic
NPart = Nota de la competència transversal

NF1 = 50% NProbs + 40% NPract + 10% NPart

L'assignatura pot també aprovar-se mitjançant un examen final, de la següent manera:

NExF = Nota obtinguda a l'examen final (en periode d'exàmens)

NF2 = 40% NExF + 20% NProbs + 30% NPract + 10% NPart

en qualsevol cas, la nota final és el màxim de les dues:

NOTA FINAL = max(NF1, NF2)

Bibliografia

Bàsica:

Complementaria:

Web links

Capacitats prèvies

Nocions elementals de probabilitat i estadística.
Nocions bàsiques d'algebra lineal i d'anàlisi real
Bon nivell de programació en un llenguatge d'alt nivell