L'objectiu d'aquest curs és proporcionar a l'alumne una formació en metodologies en el disseny avançat de mecanismes mitjançant l'optimització convexa no lineal, l'aprenentatge automàtic i l'aprenentatge profund que es poden aplicar a xarxes d'ordinadors i sistemes distribuïts.
Professorat
Responsable
Jose Maria Barceló Ordinas (
)
Altres
Jorge García Vidal (
)
Hores setmanals
Teoria
4
Problemes
0
Laboratori
0
Aprenentatge dirigit
0
Aprenentatge autònom
7
Competències
Competències Tècniques de cada especialitat
Xarxes de computadors i sistemes distribuïts
CEE2.1 - Capacitat per a entendre els models, problemes i algoritmes relacionats amb els sistemes distribuïts, així com poder dissenyar i avaluar algoritmes i sistemes que tractin la problemàtica de la distribució i ofereixin serveis distribuïts.
CEE2.2 - Capacitat d'entendre els models, problemes i algoritmes relacionats amb les xarxes de computadors, així com poder dissenyar i avaluar algoritmes, protocols i sistemes que tractin la problemàtica de la xarxes de comunicació entre computadors.
CEE2.3 - Capacitat d'entendre els models, problemes i eines matemàtiques que permeten analitzar, dissenyar i avaluar xarxes de computadors i sistemes distribuïts.
Competències Transversals
Raonament
CTR6 - Capacitat de raonament crític, lògic i matemàtic. Capacitat de resoldre problemes en la seva àrea d'estudi. Capacitat d'abstracció: capacitat de crear i utilitzar models que reflecteixin situacions reals. Capacitat de dissenyar i realitzar experiments senzills, i analitzar-ne i interpretar-ne els resultats. Capacitat d'anàlisi, de síntesi i d'avaluació.
Objectius
Capacitat per formular un problema d'optimització convexa
Competències relacionades:
CEE2.3,
CTR6,
Capacitat per resoldre problemes d'optimització no lineal.
Competències relacionades:
CEE2.3,
CTR6,
Capacitat per aplicar a problemes reals temes relacionats amb l'optimització
Competències relacionades:
CEE2.2,
CEE2.3,
CEE2.1,
CTR6,
Capacitat per aplicar algorismes d'aprenentatge automàtic a escenaris reals.
Competències relacionades:
CEE2.2,
CEE2.3,
CEE2.1,
CTR6,
Capacitat per comprendre les xarxes neuronals i els algoritmes d'aprenentatge profund
Competències relacionades:
CEE2.3,
CTR6,
Capacitat per aplicar xarxes neuronals i algoritmes d'aprenentatge profund a escenaris reals
Competències relacionades:
CEE2.2,
CEE2.3,
CEE2.1,
CTR6,
Continguts
Conceptes bàsics d'optimització convexa
En aquest tema, introduirem els conceptes d'home d'optimització no lineal amb especial èmfasi en l'optimització convexa. Concretament veurem: conjunts convexos, funcions convexes, problemes d'optimització convexa (COP) i dualitat (funció doble Lagrange, condicions d'optimitat de KKT), mètodes per resoldre COP (General Descent Methods, Interior Point Methods)
Aplicacions a temes d'aprenentatge automàtic
Exemples de com s'aplica l'optimització en el camp de l'aprenentatge automàtic en xarxes informàtiques i xarxes distribuïdes. En concret, s'explicaran mètodes supervisats com la regressió lineal múltiple amb regularització (ridge regression i lasso), els mètodes de veïns més propers, la regressió nucli (RKHS) i els processos gaussians, les màquines de vectors de suport, el bootstrapping, el bosc aleatori, i mètodes no supervisats com els mètodes de clustering amb k-means, el clustering jeràrquic, la barreja de gaussians i l'algoritme de maximització d'expectatives.
Xarxes neuronals i aprenentatge profund
En aquest capítol s'estudien els conceptes bàsics relacionats amb les xarxes neuronals i l'aprenentatge profund aplicats a les xarxes informàtiques i als sistemes distribuïts. En concret, introducció a les xarxes neuronals, algoritme de retropropagación, SGA, tècniques de regularització i revisió de les arquitectures de NN més importants, incloent-hi el perceptró multicapa (MLP), les xarxes neuronals convolucionals (CNN), les xarxes neuronals recurrents (RNN) i els codificadors automàtics.
Projecte d'exercicis de programació d'optimització no lineal
Aprenentatge autònom: Desenvolupament dun projecte en què lalumne programa alguns exercicis doptimització no lineal i redacta un informe amb els resultats obtinguts.
Durant les sessions inicials de cada tema, s'explicaran els resultats principals a la pissarra. L'estudiant resoldrà alguns exercicis per demostrar les seves habilitats en el tema. Finalment, els estudiants faran projectes de desenvolupament d'acord al temes estudias.
Mètode d'avaluació
L'avaluació es basa en el desenvolupament de projectes. Cadascuna de les activitats s'avaluarà (0 =
FM = Suma_i (Wi*Mi)
On:
Wi = es el pes de cada projecte amb i = 1, ... N
Mi = Nota de cada projecte amb i = 1, ... N
El nombre de projectes pot variar amb el pas del temps, però en general es preveuen els següents projectes:
* P1 (10%): Programació d'exercicis d'optimització no lineal,
* P2 (25%): Projecte de programació per a l'optimització d'un protocol d'accés a mitjans (MAC) en una xarxa de sensors sense fils,
* P3 (40%): Projecte de calibratge de sensors mitjançant tècniques d'aprenentatge automàtic (MLR, KNN, SVR, RF, GP),
* P4 (25%): Projecte mitjançant una xarxa neuronal