Temes Sobre Optimització i Aprenentatge Automàtic

Esteu aquí

Crèdits
6
Tipus
Obligatòria d'especialitat (Xarxes de Computadors i Sistemes Distribuïts)
Requisits
Aquesta assignatura no té requisits, però té capacitats prèvies
Departament
AC
Mail
L'objectiu d'aquest curs és proporcionar a l'alumne una formació en metodologies en el disseny avançat de mecanismes mitjançant l'optimització convexa no lineal, l'aprenentatge automàtic i l'aprenentatge profund que es poden aplicar a xarxes d'ordinadors i sistemes distribuïts.

Professorat

Responsable

  • Jose Maria Barceló Ordinas ( )

Altres

  • Jorge García Vidal ( )

Hores setmanals

Teoria
4
Problemes
0
Laboratori
0
Aprenentatge dirigit
0
Aprenentatge autònom
7

Competències

Competències Tècniques de cada especialitat

Xarxes de computadors i sistemes distribuïts

  • CEE2.1 - Capacitat per a entendre els models, problemes i algoritmes relacionats amb els sistemes distribuïts, així com poder dissenyar i avaluar algoritmes i sistemes que tractin la problemàtica de la distribució i ofereixin serveis distribuïts.
  • CEE2.2 - Capacitat d'entendre els models, problemes i algoritmes relacionats amb les xarxes de computadors, així com poder dissenyar i avaluar algoritmes, protocols i sistemes que tractin la problemàtica de la xarxes de comunicació entre computadors.
  • CEE2.3 - Capacitat d'entendre els models, problemes i eines matemàtiques que permeten analitzar, dissenyar i avaluar xarxes de computadors i sistemes distribuïts.

Competències Transversals

Raonament

  • CTR6 - Capacitat de raonament crític, lògic i matemàtic. Capacitat de resoldre problemes en la seva àrea d'estudi. Capacitat d'abstracció: capacitat de crear i utilitzar models que reflecteixin situacions reals. Capacitat de dissenyar i realitzar experiments senzills, i analitzar-ne i interpretar-ne els resultats. Capacitat d'anàlisi, de síntesi i d'avaluació.

Objectius

  1. Capacitat per formular un problema d'optimització convexa
    Competències relacionades: CEE2.3, CTR6,
  2. Capacitat per resoldre problemes d'optimització no lineal.
    Competències relacionades: CEE2.3, CTR6,
  3. Capacitat per aplicar a problemes reals temes relacionats amb l'optimització
    Competències relacionades: CEE2.2, CEE2.3, CEE2.1, CTR6,
  4. Capacitat per comprendre algorismes bàsics d'aprenentatge automàtic
    Competències relacionades: CEE2.3, CTR6,
  5. Capacitat per aplicar algorismes d'aprenentatge automàtic a escenaris reals.
    Competències relacionades: CEE2.2, CEE2.3, CEE2.1, CTR6,
  6. Capacitat per comprendre les xarxes neuronals i els algoritmes d'aprenentatge profund
    Competències relacionades: CEE2.3, CTR6,
  7. Capacitat per aplicar xarxes neuronals i algoritmes d'aprenentatge profund a escenaris reals
    Competències relacionades: CEE2.2, CEE2.3, CEE2.1, CTR6,

Continguts

  1. Conceptes bàsics d'optimització convexa
    En aquest tema, introduirem els conceptes d'home d'optimització no lineal amb especial èmfasi en l'optimització convexa. Concretament veurem: conjunts convexos, funcions convexes, problemes d'optimització convexa (COP) i dualitat (funció doble Lagrange, condicions d'optimitat de KKT), mètodes per resoldre COP (General Descent Methods, Interior Point Methods)
  2. Aplicacions a temes d'aprenentatge automàtic
    Exemples de com s'aplica l'optimització en el camp de l'aprenentatge automàtic en xarxes informàtiques i xarxes distribuïdes. En concret, s'explicaran mètodes supervisats com la regressió lineal múltiple amb regularització (ridge regression i lasso), els mètodes de veïns més propers, la regressió nucli (RKHS) i els processos gaussians, les màquines de vectors de suport, el bootstrapping, el bosc aleatori, i mètodes no supervisats com els mètodes de clustering amb k-means, el clustering jeràrquic, la barreja de gaussians i l'algoritme de maximització d'expectatives.
  3. Xarxes neuronals i aprenentatge profund
    En aquest capítol s'estudien els conceptes bàsics relacionats amb les xarxes neuronals i l'aprenentatge profund aplicats a les xarxes informàtiques i als sistemes distribuïts. En concret, introducció a les xarxes neuronals, algoritme de retropropagación, SGA, tècniques de regularització i revisió de les arquitectures de NN més importants, incloent-hi el perceptró multicapa (MLP), les xarxes neuronals convolucionals (CNN), les xarxes neuronals recurrents (RNN) i els codificadors automàtics.

Activitats

Activitat Acte avaluatiu


Conceptes bàsics d'optimització convexa


Objectius: 1 2 3
Continguts:
Teoria
20h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
0h

Aplicacions a temes d'aprenentatge automàtic


Objectius: 4 3
Continguts:
Teoria
18h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
0h

Neural networks and deep learning


Objectius: 3 6
Continguts:
Teoria
12h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
0h

Projecte de programació per a l'optimització d'un protocol d'accés a mitjans (MAC) en una xarxa de sensors sense fils,


Objectius: 3
Teoria
1h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
25h

Projecte de calibratge de sensors mitjançant tècniques d'aprenentatge automàtic (MLR, KNN, SVR, RF, GP),


Objectius: 5
Teoria
2h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
40h

Projecte en xarxes neuronals i aprenentatge profund


Objectius: 7
Teoria
0h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
25h

Projecte d'exercicis de programació d'optimització no lineal


  • Aprenentatge autònom: Desenvolupament d’un projecte en què l’alumne programa alguns exercicis d’optimització no lineal i redacta un informe amb els resultats obtinguts.
Objectius: 1 2
Teoria
1h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
10h

Entrega del projecte d'exercicis de programació d'optimització no lineal


Objectius: 1 2
Setmana: 5
Tipus: entrega
Teoria
0h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
0h

Entrega del projecte de programació per a l'optimització d'un protocol d'accés a mitjans (MAC) en una xarxa de sensors sense fils,


Objectius: 2 3
Setmana: 9
Tipus: entrega
Teoria
0h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
0h

Entrega del projecte de calibratge de sensors mitjançant tècniques d'aprenentatge automàtic (MLR, KNN, SVR, RF, GP),


Objectius: 5 4 3
Setmana: 16
Tipus: entrega
Teoria
0h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
0h

Entrega del projecte mitjançant una xarxa neuronal


Objectius: 3 6 7
Setmana: 18
Tipus: entrega
Teoria
0h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
0h

Metodologia docent

Durant les sessions inicials de cada tema, s'explicaran els resultats principals a la pissarra. L'estudiant resoldrà alguns exercicis per demostrar les seves habilitats en el tema. Finalment, els estudiants faran projectes de desenvolupament d'acord al temes estudias.

Mètode d'avaluació

L'avaluació es basa en el desenvolupament de projectes. Cadascuna de les activitats s'avaluarà (0 =
FM = Suma_i (Wi*Mi)

On:

Wi = es el pes de cada projecte amb i = 1, ... N
Mi = Nota de cada projecte amb i = 1, ... N

El nombre de projectes pot variar amb el pas del temps, però en general es preveuen els següents projectes:
* P1 (10%): Programació d'exercicis d'optimització no lineal,
* P2 (25%): Projecte de programació per a l'optimització d'un protocol d'accés a mitjans (MAC) en una xarxa de sensors sense fils,
* P3 (40%): Projecte de calibratge de sensors mitjançant tècniques d'aprenentatge automàtic (MLR, KNN, SVR, RF, GP),
* P4 (25%): Projecte mitjançant una xarxa neuronal

Bibliografia

Bàsica:

Web links

Capacitats prèvies

Recomanat haver cursat prèviament el curs "Anàlisi Estadística de Xarxes i Sistemes (SANS-MIRI)".