En aquesta assignatura es continuen desenvolupant el conceptes de raonament introduïts a l'assignatura Fonaments Matemàtics, a la vegada que s'estudien dos temes amb els que tot enginyer informàtic ha d'estar familiaritzat: la teoria de grafs i l'àlgebra lineal.
Professorat
Responsable
Mercè Mora Giné (
)
Altres
Albert Vives Batalla (
)
Clément Requilé (
)
Eric López Platón (
)
Fabian Maximilian Klute (
)
Fernando Martínez Sáez (
)
Gemma Alsina Ruiz (
)
Jordi Massó Cuscó (
)
Jose Luis Ruiz Muñoz (
)
Juan Antonio Delgado Guerrero (
)
Mariona González Esteve (
)
Núria Mira Gómez (
)
Rodrigo Ignacio Silveira (
)
Hores setmanals
Teoria
3
Problemes
0
Laboratori
2
Aprenentatge dirigit
0
Aprenentatge autònom
7.5
Competències
Competències Tècniques
Competències tècniques comunes
CT1 - Demostrar coneixement i comprensió de fets essencials, conceptes, principis i teories relatives a la informàtica i a les seves disciplines de referència.
CT1.2A
- Interpretar, seleccionar i valorar conceptes, teories, usos i desenvolupaments tecnològics relacionats amb la informàtica i la seva aplicació a partir dels fonaments matemàtics, estadístics i físics necessaris. CEFB1: capacitat per a resoldre els problemes matemàtics que es plantegin en la enginyeria. Aptitud per a aplicar els coneixements sobre: àlgebra, càlcul diferencial i integral i mètodes numèrics; estadística i optimització.
CT1.2C
- Interpretar, seleccionar i valorar conceptes, teories, usos i desenvolupaments tecnològics relacionats amb la informàtica i la seva aplicació a partir dels fonaments matemàtics, estadístics i físics necessaris. CEFB3. Capacitat per a comprendre i dominar els conceptes bàsics de matemàtica discreta, lògica, algorísmica i complexitat computacional, i la seva aplicació per al tractament automàtic de la informació mitjançant sistemes computacionals i la seva aplicació per a la resolució de problemes propis de l'enginyeria.
Competències Transversals
Raonament
G9 [Avaluable] - Capacitat de raonament crític, lògic i matemàtic. Capacitat de resoldre problemes en la seva àrea d'estudi. Capacitat d'abstracció: capacitat de crear i utilitzar models que reflecteixin situacions reals. Capacitat de dissenyar i realitzar experiments senzills, i analitzar-ne i interpretar-ne els resultats. Capacitat d'anàlisi, de síntesi i d'avaluació.
G9.1
- Capacitat de raonament crític, lògic i matemàtic. Capacitat per comprendre l'abstracció i utilitzar-la adequadament.
Objectius
Conèixer el concepte de graf com a model de relació binària. Saber treballar amb les diferents representacions d'un graf; en particular, saber trobar els principals paràmetres d'un graf i saber decidir justificadament si dos grafs donats són isomorfs.
Competències relacionades:
G9.1,
CT1.2C,
Conèixer les definicions relatives a recorreguts, connexió i distància en grafs, i saber treballar amb aquests conceptes i les seves relacions a nivell teòric i pràctic. Conèixer i saber aplicar algorismes per a determinar la connectivitat i per a calcular distàncies en grafs.
Competències relacionades:
G9.1,
CT1.2C,
Conèixer els conceptes de graf eulerià i de graf hamiltonià i saber determinar, justificadament, si un graf és eulerià o hamiltonià. Ser conscient de que es tracta de dos problemes en aparença similars però molt diferents des del punt de vista teòric i computacional.
Competències relacionades:
G9.1,
CT1.2C,
Saber què és un arbre i saber treballar amb les diferents definicions equivalents. Conèixer el concepte d'arbre generador i la seva relació amb la connectivitat; conèixer i saber aplicar algorismes per a trobar-ne. Saber codificar arbres amb la seqüència de Prüfer.
Competències relacionades:
G9.1,
CT1.2C,
Saber operar amb matrius. Conèixer les operacions elementals per files, saber-les aplicar per trobar el rang d'una matriu i per decidir si una matriu és invertible. Conèixer les propietats bàsiques dels determinants, saber-les deduir i saber-les aplicar als càlculs.
Competències relacionades:
G9.1,
CT1.2A,
Conèixer i saber aplicar el mètode de Gauss-Jordan per a discutir i resoldre sistemes lineals, i per a calcular la inversa d'una matriu.
Competències relacionades:
CT1.2A,
Saber què és un espai vectorial. Conèixer els conceptes de subespai vectorial, dependència i independència lineal, i base. Saber provar propietats bàsiques sobre aquests conceptes i les seves relacions.
Competències relacionades:
G9.1,
CT1.2A,
Saber operar en un espai vectorial. Saber treballar a nivell pràctic amb els conceptes de subespai vectorial, combinació lineal, generadors, dependència lineal i bases. Saber trobar la matriu d'un canvi de base.
Competències relacionades:
CT1.2A,
Conèixer els conceptes d'aplicació lineal, nucli, imatge, isomorfisme, endomorfisme. Saber provar propietats bàsiques sobre aquests conceptes i les seves relacions.
Competències relacionades:
G9.1,
CT1.2A,
Saber decidir si una aplicació és lineal. Saber treballar a nivell pràctic amb els conceptes de nucli, imatge, endomorfisme i isomorfisme.
Saber trobar la matriu associada a una aplicació lineal i saber-la canviar de base.
Competències relacionades:
CT1.2A,
Saber què són un valor propi, un vector propi i el polinomi característic d'un endomorfisme, i saber-los trobar. Saber provar propietats bàsiques sobre els conceptes anteriors. Saber decidir si un endomorfisme és diagonalitzable i, en cas afirmatiu, saber-lo diagonalitzar.
Competències relacionades:
G9.1,
CT1.2A,
Continguts
Conceptes bàsics de grafs
Definició de graf; matrius d'adjacència i d'incidència; lema de les encaixades i conseqüències; isomorfisme de grafs; tipus de grafs; subgrafs; operacions en grafs.
Recorreguts, connexió i distància
Definicions de recorregut, camí, cicle; algunes propietats de
recorreguts; definicions de graf connex i components connexos; algorisme DFS;
desigualtat m>= n-1; definicions de vèrtexs de tall i arestes pont; caracterització; definicions de distància i diàmetre; algorisme BFS; caracterització de grafs bipartits.
Grafs eulerians i hamiltonians
Definicions de circuit, senderó i graf eulerià; caracterització de grafs eulerians; definicions de cicle, camí i graf hamiltonià; condicions necessàries per ser hamiltonià; els teoremes d'Ore i de Dirac.
Arbres
Definicions de bosc, arbre i fulla; caracterització d'abres i
corol·laris; definició d'arbre generador; revisió de DFS i BFS; el teorema de Cayley.
Matrius i sistemes d'equacions lineals
Definició de matriu i tipus de matrius; operacions lineals i
propietats; producte de matrius i matriu inversa; matriu transposada i
relació amb les operacions; operacions elementals per files; matrius
elementals; matriu esglaonada per files; rang
d'una matriu per files; càlcul de la matriu inversa;
sistemes
d'equacions lineals i sistemes equivalents; discussió i resolució mitjançant Gauss-Jordan; definició recursiva de determinant; propietats dels determinants;
menors d'una matriu i relació amb el rang.
Espais vectorials
Definició d'espai vectorial; definició de subespai i caracterització equivalent; subespai generat; combinacions lineals; sistemes de generadors; independència lineal i propietats; bases i coordenades; dimensió; canvis de base, matriu del canvi de base.
Aplicacions lineals
Definició d'aplicació lineal i propietats;aplicacion lineal definida per una matriu; matriu d'una aplicació lineal; nucli i imatge, teorema de la dimensió; caracterització d'aplicacions injectives i exhaustives, isomorfisme d'espais vectorials, espais isomorfs; composició d'aplicacions; canvis de base i aplicacions lineals; interpretació geomètrica d'aplicacions lineals al pla i a l'espai.
Diagonalització
Valors i vectors propis; diagonalització d'aplicacions lineals; matrius simètriques.
Activitats
ActivitatActe avaluatiu
Introducció a la teoria de grafs
Desenvolupament teòric i pràctic dels temes 1 i 2 de la part de teoria de grafs: conceptes bàsics, recorreguts, connexió i distància. Objectius:12 Continguts:
Examen parcial de la primera part del curs (teoria i problemes)
En aquesta prova s'avaluaran els objectius 1-4 de l'assignatura. Objectius:1234 Setmana:
7 (Fora d'horari lectiu)
Teoria
2h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
9h
Examen final de l'assignatura (teoria i problemes)
L'examen tindrà dues parts. A la primera (F1) s'avaluaran els objectius 1-4 de l'assignatura i a la segona (F2), els objectius 5-11. Objectius:1234567891011 Setmana:
15 (Fora d'horari lectiu)
Teoria
3h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
12.5h
Metodologia docent
A les classes de teoria el professor explicarà el tema acompanyant-lo d'exemples i resolent alguns problemes de la llista.
Durant les classes de taller l'alumnat resoldrà problemes sota la supervisió del professor; alguns d'aquests problemes s'hauran de portar preparats amb antelació.
Mètode d'avaluació
La nota de l'assignatura s'obtindrà a partir de:
-un examen parcial P a mig quadrimestre, sobre la primera part del temari;
-la valoració T del treball i l'assoliment d'objectius en sessions de taller, que pot incloure, entre d'altres, proves en hores de classe, resolució de qüestionaris online i participació en el projecte EngiMath;
-un examen final F, que tindrà dues parts, F1 i F2.
La nota de l'informe d'avaluació serà:
0.2*T+0.35*MAX(P,F1)+0.45*F2
Els alumnes que vulguin presentar-se a la part F1 ho hauran de comunicar amb antel·lació a la coordinadora de l'assignatura, pels mitjans i en els terminis que es faran públics oportunament.
Rebran la qualificació NP (no presentat) aquells alumnes que no es presentin a cap prova corresponent al bloc de continguts 5,6,7,8.
La competència transversal s'avalua amb els exàmens.
REAVALUACIÓ.
Hi haurà reavaluació d'aquesta assignatura. Consisteix en un curs intensiu de 12 hores presencials amb la corresponent avaluació, que es fan un cop finalitzats els exàmens finals i abans de l'inici del quadrimestre següent. Es calcula que la reavaluació requereix unes 50 hores de dedicació per part de l'estudiant entre classes presencials, hores d'estudi personal i avaluació. Només hi poden optar els estudiants que compleixen determinats requisits. Les places són limitades i s'assignaran per ordre decreixent de nota. Cada estudiant podrà fer com a molt la reavaluació d'una de les assignatures de fase inicial que s'ofereixen.
Requisits mínims per optar a la reavaluació.
Per a optar a la reavaluació és requisit indispensable estar matriculat de l'assignatura i haver obtingut una nota final entre 3.5 i 4.9
Requisits per a ser avaluat del curs intensiu.
Per tal de ser avaluat del curs intensiu és obligatori:
- Assistir a totes les classes presencials.
- Fer els exercicis o activitats que demani el professorat del curs.
Preinscripció i admissió.
El procés d'inscripció es publicarà al racó. L'admissió i no assistència al curs pot comportar no ser admès en pròximes edicions.
Avaluació.
El resultat de l'avaluació del curs intensiu serà Apte o No apte. La nota definitiva de l'assignatura serà:
Nota definitiva = 5, si la nota de l' intensiu és Apte;
Nota definitiva = Nota assignatura, si la nota de l' intensiu és No apte;
on Nota assignatura és la nota sobre 10 obtinguda el quadrimestre.