Check offers of other studies and specializations
Most EU citizens are concerned about online privacy. EPRIVO aims at building a European data-driven observatory that automatically looks for online services that do not respect our privacy rights.
Machine Learning (ML) has taken the world by storm and has become a fundamental pillar of engineering. As a result, the last decade has witnessed an explosive growth in the use of deep neural networks (DNNs) in pursuit of exploiting the advantages of ML in virtually every aspect of our lives: computer vision, natural language processing, medicine or economics are just a few examples. However, NOT all DNNs fit to all problems: convolutional NNs are good for computer vision, recurrent NNs are good for temporal analysis, and so on. In this context, the main focus of N3Cat and BNN-UPC is to explore the possibilities of the new and less explored variant called Graph Neural Networks (GNNs), whose aim is to learn and model graph-structured data. This has huge implications in fields such as quantum chemistry, computer networks, or social networks among others. OBJECTIVES =========== N3Cat and BNN-UPC are looking for students wanting to work in the area of Graph Neural Networks studying their uses, processing architectures, and algorithms. To this end, the candidate will work on ONE of the following areas: - Investigating the state of the art on this area, surveying the different works done in terms of applications, processing frameworks, algorithms, benchmarks, datasets. This can be taken from a hardware or software perspective. - Helping to build a testbed formed by a cluster of GPUs that will be running pyTorch or Tensorflow. We will instrument the testbed to measure the computation workload and communication flows between GPUs. - Analyzing the communication workload of running a GNN either in the testbed or by means of architectural simulations. - Developing means of accelerating GNN processing in software (e.g., improving scheduling of the message passing) or hardware (e.g. designing a domain-specific architecture).
Companies and scientists working in areas such as finance or genomics are generating enormously large datasets (in the order of petabytes) commonly referred as Big Data. How to efficiently and effectively process such large amounts of data is an open research problem. Since communication is involved in Big Data processing at many levels, at the NaNoNetworking Center in Catalunya (N3Cat) we are currently investigating the potential role of wireless communications in the Big Data scenario. The main focus of the project is to evaluate the impact of applying wireless communications and networking methods to processors and data centers oriented to the management of Big Data. OBJECTIVES =========== N3Cat is looking for students wanting to work in the area of wireless communications for Big Data. To this end, the candidate will work on one of the following areas: - Traffic analysis of Big Data frameworks and applications, as well as in smaller manycore systems. - Channel characterization in Big Data environments: indoor, within the racks of a data center, within the package of CPU, within a chip. - Design of wireless communication protocols for computing systems from the processor level to the data center level.
Desarrollo de una plataforma de contabilidad en un entorno gamificado (por ejemplo, el metaverso de Facebook). La plataforma debe ser como un bot de inteligencia artificial, ayudando a un director ejecutivo no financiero a tener toda la información que le permitirá comprender el negocio, como una contabilidad gamificada manual.
The main objective of this TFM is to build a proof-of-concept implementation of a Network Intrusion Detection System using Graph Neural Networks and to evaluate its performance using publicly available data sets.
© Facultat d'Informàtica de Barcelona - Universitat Politècnica de Catalunya - Website Disclaimer
This website uses cookies to offer you the best experience and service. If you continue browsing, it is understood that you accept our cookies policy.