Aquest curs introduirà a diferents tècniques avançades dins de les àrees de aprenentatge automàtic, mineria de dades i raonament basat en casos. La part d'aprenentatge automàtic estarà orientada a algorismes no supervisats per dades estructurades (sequencies, fluxos, grafs) i no estructurades. La part de raonament basat en casos estarà orientada al diseny i implementació d'aquest sistemes
Hores setmanals
Teoria
3
Problemes
0
Laboratori
0
Aprenentatge dirigit
0.21
Aprenentatge autònom
5.7
Objectius
Coneixer i fer servir tecniques avançades d'aprenentatge no supervisat i mineria de dades no supervisada per a aplicacions en tots els dominis d'aplicacion de la ingenieria i la ciencia
Competències relacionades:
CB7,
CT2,
CT4,
CEA12,
CEA13,
CEP1,
CG1,
CG3,
Continguts
Mineria de dades una perspectiva global
Brief introduction to what is Data Mining and Knowledge Discovery, the areas they are related to and the different techniques involved
Preprocessament/Transformacio no supervisada de dades
This topic will include different algorithms for unsupervised data preprocessing such as data normalization, discretization, dimensionality reduction and feature extraction (PCA, ICA, SVD, linear and non linear, multidimensional scalling and non negative matrix factorization)
Aprenentatge no supervisat/Taxonomia numerica
This topic will include classical and current algorithms for unsupervised learning from machine learning and statistics including hierarchical and parititional algorithms (K-means,Fuzzy C-means, Gaussian EM, graph partitioning, density based algorithms, grid based algorithms, unsupervised ANN, affinity propagation, ...)
Clustering Semisupervisat
This topic will include current semi supervised algorithms for clustering data (based on constraints, based on rules, markov random fields)
Aprenentatge no supervisat en mineria de dades
This topic will include current trends on knowledge discovery for data mining and big data, (scalability, any time clustering, one pass algorithms, approximation algorithms, distributed clustering, ..)
Regles d'associació
This topic will include and introduction to association rules algorithms and their relationship with unsupervised learning algorithms and clustering
Mineria de dades sequencials i estucturades
This topic will include algorithms for unsupervised learning with sequential data and structured data, such as mining frequent sequences, strings, time series clustering and frequent motifs, clustering data streams, clustering graphs and social networks and discovering frequent subgraphs
Fonaments de Raonament Basat en Casos
Cognitive theories. Basic cycle of CBR reasoning. Academic Demosntrators.
CBR System Components
Case Structure. Case Library Structure. Retrieval. Adaptation/Reuse. Evaluation/Repair. Learning/Retain
CBR Application
A complex real-world example. OPENCASE/GESCONDA-CBR: a domain-independent CBR System .
CBR Development Problems
Competence. Space Efficiency. Time Efficiency.
Reflective/Introspective Reasoning in CBR
Introspection reasoning. Case Base maintenance.