Probabilitat i Estadística I

Esteu aquí

Crèdits
7.5
Tipus
Obligatòria
Requisits
Aquesta assignatura no té requisits, però té capacitats prèvies
Departament
MAT;EIO
L'assignatura presenta els conceptes bàsics de probabilitat i estadística que són necessaris per al desenvolupament d'aplicacions en enginyeria i ciència de dades. Es proporciona el marc conceptual i les habilitats instrumentals bàsiques en teoria de la probabilitat i inferència estadística.

Professors

Responsable

  • Pedro Delicado Useros ( )

Altres

  • Oriol Serra Albo ( )

Hores setmanals

Teoria
3
Problemes
1
Laboratori
1
Aprenentatge dirigit
0.5
Aprenentatge autònom
7

Competències

Competències Tècniques

Competències tècniques

  • CE3 - Analitzar fenòmens complexos mitjançant la probabilitat i l'estadística, i plantejar models d'aquests tipus en situacions concretes. Formular i resoldre problemes d'optimització matemàtica.

Competències Transversals

Transversals

  • CT5 - Ús solvent dels recursos d'informació. Gestionar l'adquisició, l'estructuració, l'anàlisi i la visualització de dades i informació en l'àmbit de l'especialitat i valorar de forma crítica els resultats d'aquesta gestió.
  • CT6 - Aprenentatge autònom. Detectar deficiències en el propi coneixement i superar-les mitjançant la reflexió crítica i l'elecció de la millor actuació per ampliar aquest coneixement.

Bàsiques

  • CB1 - Que els estudiants hagin demostrat posseir i comprendre coneixements en una àrea d'estudi que parteix de la base de l'educació secundària general, i se sol trobar a un nivell que, si bé es recolza en llibres de text avançats, inclou també alguns aspectes que impliquen coneixements procedents de l'avantguarda del seu camp d'estudi.
  • CB3 - Que els estudiants tinguin la capacitat de reunir i interpretar dades rellevants (normalment dins la seva àrea d'estudi) per emetre judicis que incloguin una reflexió sobre temes rellevants d'índole social, científica o ètica.
  • CB5 - Que els estudiants hagin desenvolupat aquelles habilitats d'aprenentatge necessàries per emprendre estudis posteriors amb un alt grau d'autonomia

Competències Tècniques Generals

Genèriques

  • CG1 - Concebre sistemes computacionals que integren dades de procedències i formes molt diverses, construeixen amb ells models matemàtics, raonen sobre aquests models i actuen en conseqüència, aprenent de l'experiència.
  • CG2 - Elegir i aplicar els mètodes i tècniques més adequats a un problema definit per dades que representin un repte pel seu volum, velocitat, varietat o heterogeneïtat, inclosos mètodes informàtics, matemàtics, estadístics i de processament del senyal.

Objectius

  1. Al finalitzar el curs els estudiants coneixeran la definició de probabilitat i les seves propietats, i les aplicaran per a resoldre problemes de càlcul de probabilitats.
    Competències relacionades: CE3, CG1, CB5,
  2. Al finalitzar el curs els estudiants sabran fer servir el concepte de variable aleatòria per a formalitzar i resoldre problemes de càlcul de probabilitats.
    Competències relacionades: CE3, CG1, CB5,
  3. Al finalitzar el curs els estudiants sabran simular fenòmens aleatoris complexos amb l'ordinador i deduir-ne valors aproximats de quantitats d'interès (probabilitats, característiques de variables aleatòries) difícilment calculables de forma analítica.
    Competències relacionades: CE3, CT5, CT6, CG1, CG2, CB1, CB3, CB5,
  4. Al finalitzar el curs els estudiants coneixeran les distribucions probabilístiques més usuals i sabran reconèixer situacions on es fan servir per modelitzar fenòmens reals.
    Competències relacionades: CE3, CG1, CB5,
  5. Al finalitzar el curs els estudiants sabran calcular distribucions i esperances condicionades i fer-les servir en predicció.
    Competències relacionades: CE3, CT6, CG1, CB5,
  6. Al finalitzar el curs els estudiants sabran determinar si dues variables aleatòries són independents, i en cas de no ser-ho en sabran mesurar el coeficient de correlació lineal.
    Competències relacionades: CE3, CT6, CG1, CB5,
  7. Al finalitzar el curs els estudiants coneixeran la Llei dels Grans Nombres i el Teorema del Límit Central.
    Competències relacionades: CE3, CG1, CB1, CB5,
  8. Al finalitzar el curs els estudiants coneixeran els conceptes de població, mostra, paràmetre i estimador, i en sabran les propietats bàsiques.
    Competències relacionades: CE3, CT6, CG1, CB5,
  9. Al finalitzar el curs els estudiants coneixeran les eines bàsiques d'estadística descriptiva i sabran aplicar-les.
    Competències relacionades: CE3, CT5, CG1, CG2, CB3, CB5,
  10. Al finalitzar el curs els estudiants coneixeran els conceptes bàsics d'inferència estadística (estimació puntual, intervals de confiança i proves d'hipòtesis) i sabran calcular-los en situacions reals.
    Competències relacionades: CE3, CT5, CT6, CG1, CB3, CB5,

Continguts

  1. Espais de probabilitat i variables aleatòries
    Fenòmens aleatoris. Àlgebra d'esdeveniments. Espai de probabilitat. Probabilitat condicionada. Independència d'esdeveniments. Teorema de Bayes. Simulació d'experiments aleatoris.
  2. Variables aleatòries
    Definició de variable aleatòria. Funció de distribució de probabilitat. Variables aleatòries discretes (funció de probabilitat) i contínues (funció de densitat de probabilitat). Esperança i moments. Models de distribucions usuals. Simulació de variables aleatòries.
  3. Vectors aleatoris
    Distribucions multidimensionals. Independència. Distribucions condicionades. Covariància i correlació. Esperança i matriu de covariàncies. Esperança condicionada. Distribució multinomial. Distribució normal multivariant.
  4. Sumes de variables aleatòries
    Distribució de la suma. Desigualtats de Markov, Chebyshev i Chernoff. Llei dels Grans Nombres. Teorema del Límit Central.
  5. Població i mostra
    Mostra aleatòria. Funció de distribució empírica. Models estadístics paramètrics. Paràmetres i estimadors. Estadística descriptiva.
  6. Estimació puntual
    Mètode dels moments. Màxima versemblança. Propietats dels estimadors (biaix, variància, error quadràtic mitjà, consistència, suficiència, eficiència).
  7. Intervals de confiança
    Intervals de confiança
  8. Proves d'hipòtesis
    Errors tipus I i tipus II. Potència. Relació amb els intervals de confiança. La prova de la raó de la versemblança.

Activitats

Activitat Acte avaluatiu


Desenvolupament del Tema "Espais de probabilitat i variables aleatòries"

Desenvolupament del Tema "Espais de probabilitat i variables aleatòries"
Objectius: 1 3
Continguts:
Teoria
6h
Problemes
2h
Laboratori
2h
Aprenentatge dirigit
0h
Aprenentatge autònom
7h

Desenvolupament del Tema "Variables aleatòries"

Desenvolupament del Tema "Variables aleatòries"
Objectius: 2 3 4 9
Teoria
6h
Problemes
2h
Laboratori
2h
Aprenentatge dirigit
0h
Aprenentatge autònom
7h

Desenvolupament del Tema "Vectors aleatoris"

Desenvolupament del Tema "Vectors aleatoris"
Objectius: 3 5 6 9
Continguts:
Teoria
7.5h
Problemes
3h
Laboratori
2h
Aprenentatge dirigit
0h
Aprenentatge autònom
6.3h

Desenvolupament del Tema "Sumes de variables aleatòries"

Desenvolupament del Tema "Sumes de variables aleatòries"
Objectius: 3 5 7
Continguts:
Teoria
4.5h
Problemes
1.5h
Laboratori
1.5h
Aprenentatge dirigit
0h
Aprenentatge autònom
5.3h

Desenvolupament del Tema "Població i mostra"

Desenvolupament del Tema "Població i mostra"
Objectius: 3 8 9
Continguts:
Teoria
4.5h
Problemes
1.5h
Laboratori
1.5h
Aprenentatge dirigit
0h
Aprenentatge autònom
5.2h

Desenvolupament del Tema "Estimació puntual"

Desenvolupament del Tema "Estimació puntual"
Objectius: 10
Continguts:
Teoria
7.5h
Problemes
2h
Laboratori
3h
Aprenentatge dirigit
0h
Aprenentatge autònom
6.2h

Desenvolupament del Tema "Intervals de confiança"

Desenvolupament del Tema "Intervals de confiança"
Objectius: 10
Continguts:
Teoria
3h
Problemes
1h
Laboratori
1h
Aprenentatge dirigit
0h
Aprenentatge autònom
2.5h

Desenvolupament del Tema "Proves d'hipòtesis"

Desenvolupament del Tema "Proves d'hipòtesis"

Continguts:
Teoria
6h
Problemes
2h
Laboratori
2h
Aprenentatge dirigit
0h
Aprenentatge autònom
5.5h

Examen final

Examen final
Objectius: 1 2 4 5 6 7 8 10
Setmana: 15 (Fora d'horari lectiu)
Tipus: examen final
Teoria
0h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
3h
Aprenentatge autònom
30h

Examen parcial

Examen parcial
Objectius: 1 2 4 5 6
Setmana: 8 (Fora d'horari lectiu)
Tipus: examen de teoria
Teoria
0h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
2h
Aprenentatge autònom
10h

Examen parcial de laboratori

Examen parcial de laboratori
Objectius: 3 9
Setmana: 8 (Fora d'horari lectiu)
Tipus: examen de laboratori
Teoria
0h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
1h
Aprenentatge autònom
10h

Examen final de laboratori

Examen final de laboratori
Objectius: 3 9 10
Setmana: 15 (Fora d'horari lectiu)
Tipus: examen de laboratori
Teoria
0h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
1h
Aprenentatge autònom
10h

Metodologia docent

Teoria:
Classes magistrals que desenvolupen la teoria i inclouen exemples ilustratius.

Problemes:
Els alumnes disposen amb antelació de la llista de problemes corresponent al tema que estan desenvolupant a Teoria. Han tingut la oportunitat d'intentar resoldre els problems abans de la classe de problemes. Si han trobat dificultats les plantegen al professor de ploblemes. El professor resol a la pissarra els dubtes i desenvolupa les solucions completes d'alguns problemes de la llista que considera especialment formatius.

Laboratori:
El professor va introduint al llarg del curs el llengutage R, amb especial atenció a les eines de simulació de variables a leatòries, estadística descriptiva i inferència estadística univariant.

Mètode d'avaluació

Un examen parcial (EP) i un examen final (EF). Cadascun d'ells té una part de teoria i problemes, i una altra part de laboratori.

Al llarg del curs (amb periodicitat bisetmanal, aproximadament) es proposaran activitats (ACT) curtes (un problema a resoldre analíticament o amb l'ordinador).

La nota final (NF) es calcula com

NF = 0.65 * EF + 0.25* max(EP,EF) + 0.10*max(ACT,EF)

La nota de l'examen de reavaluació (ER) substitueix el 100% de la nota de l'examen final. Per tant, la nota final després de la reavaluació (NFreav) serà

NFreav = 0.65 * ER + 0.25* max(EP,ER) + 0.10*max(ACT,ER)

Bibliografia

Bàsica:

Complementaria:

Web links

Capacitats prèvies

Els coneixements adquirits a les assignatures del Grau del quadrimestre anterior.