L'objectiu de l'assignatura d'Anàlisi de Dades és proporcionar la filosofia i les principals metodologies per l'extracció de la informació continguda en les dades. Comprèn des de la preparació de les dades, la anàlisi exploratoria, la visualització de la informació, la modelització dels patrons de comportament i la seva implementació en sistemes informàtics.
Professorat
Responsable
Jan Graffelman (
)
Jose Antonio Sánchez Espigares (
)
Altres
Nihan Acar Denizli (
)
Hores setmanals
Teoria
2
Problemes
0
Laboratori
2
Aprenentatge dirigit
0
Aprenentatge autònom
6
Competències
Competències Tècniques
Competències tècniques
CE1 - Utilitzar amb destresa els conceptes i mètodes matemàtics subjacents els problemes de la ciència i l'enginyeria de les dades.
CE2 - Ser capaç de programar solucions a problemes d'enginyeria: Dissenyar solucions algorítmiques eficients a un problema computacional donat, implementar-les en forma de programari robust, estructurat i mantenible, i comprovar la validesa de la solució.
CE3 - Analitzar fenòmens complexos mitjançant la probabilitat i l'estadística, i plantejar models d'aquests tipus en situacions concretes. Formular i resoldre problemes d'optimització matemàtica.
CE4 - Utilitzar els sistemes de computació actuals, inclosos els sistemes d'alt rendiment, per al procés de grans volums de dades des del coneixement de la seva estructura, funcionament i particularitats.
CE8 - Capacitat de triar i emprar tècniques de modelització estadística i anàlisi de dades, avaluant la qualitat dels models, validant-los i interpretant-los.
Competències Transversals
Transversals
CT3 - Comunicació eficaç oral i escrita. Comunicar-se de forma oral i escrita amb altres persones sobre els resultats de l'aprenentatge, de l'elaboració del pensament i de la presa de decisions; participar en debats sobre temes de la pròpia especialitat.
CT4 - Treball en equip. Ser capaç de treballar com a membre d'un equip interdisciplinari, ja sigui com un membre més o realitzant tasques de direcció, amb la finalitat de contribuir a desenvolupar projectes amb pragmatisme i sentit de la responsabilitat, assumint compromisos tenint en compte els recursos disponibles.
CT5 [Avaluable] - Ús solvent dels recursos d'informació. Gestionar l'adquisició, l'estructuració, l'anàlisi i la visualització de dades i informació en l'àmbit de l'especialitat i valorar de forma crítica els resultats d'aquesta gestió.
CT6 - Aprenentatge autònom. Detectar deficiències en el propi coneixement i superar-les mitjançant la reflexió crítica i l'elecció de la millor actuació per ampliar aquest coneixement.
CT7 [Avaluable] - Tercera llengua. Conèixer una tercera llengua, preferentment l'anglès, amb un nivell adequat oral i escrit i d'acord amb les necessitats que tindran els titulats i titulades.
Bàsiques
CB2 - Que els estudiants sàpiguen aplicar els seus coneixements al seu treball o vocació d'una manera professional i posseeixin les competències que solen demostrar-se mitjançant l'elaboració i defensa d'arguments i la resolució de problemes dins la seva àrea d'estudi.
CB4 - Que els estudiants puguin transmetre informació, idees, problemes i solucions a un públic tant especialitzat com no especialitzat.
Competències Tècniques Generals
Genèriques
CG1 - Concebre sistemes computacionals que integren dades de procedències i formes molt diverses, construeixen amb ells models matemàtics, raonen sobre aquests models i actuen en conseqüència, aprenent de l'experiència.
CG2 - Elegir i aplicar els mètodes i tècniques més adequats a un problema definit per dades que representin un repte pel seu volum, velocitat, varietat o heterogeneïtat, inclosos mètodes informàtics, matemàtics, estadístics i de processament del senyal.
CG3 - Treballar en equips i projectes multidisciplinaris relacionats amb el processat i explotació de dades complexes, interactuant fluidament amb enginyers i professionals d'altres disciplines.
CG4 - Identificar oportunitats per a aplicacions innovadores orientades a dades en entorns tecnològics en contínua evolució.
Principal Component Regression, Partial Least Squares Regression
Series Temporals
Competències relacionades:
CE1,
CE3,
CE8,
CT6,
Subcompetences:
Outliers, efectes de calendari, anàlisi de Intervenció
Models univariants de series temporals
Aplicacions del Filtre de Kalman.
Continguts
Pre-proces de les dades
Anomalies, dades mancants i transformacions.
Anàlisi de components principals
Descripció multivariant de variables continues. Regresió sobre les components principals.
Anàlisi factorial
Descomposició en valors singulars, biplots, anàlisi factorial
Escalament multidimensional (MDS)
Mesures de distància. Escalament multidimensional mètric. Algorismes.
Análisi de conglomerats
Tècniques de clustering jeràrquic. Mètodes de agglomeració. Criteri de Ward. Dendrograma.
Anàlisi de correspondències
Taules de contingència. Perfils fila i perfils columna. Independència i estadístic chi-quadrat. Anàlisi de correspondències simples. Biplot.
Anàlisi discriminant
Distribució normal multivariant Funció discriminaciant lineal de Fisher.
Models univariants de series temporals
Allisat exponencial, models ARIMA.
Anàlisi de intervenció
Anomalies, efectes de calendari. anàlisi de Intervenció
Activitats
ActivitatActe avaluatiu
Pre-procés de les dades
Pràctica de preprocés de les dades Objectius:1 Continguts:
Els estudiants fan un práctica sobre l'anàlisi d'unes dades i lliuren un qüestionari. Objectius:1234 Setmana:
8 (Fora d'horari lectiu)
Teoria
0h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
3h
Aprenentatge autònom
15h
Projecte
Els estudiants fan, en grups de dos, un estudi complert d'unes dades utilitzant les tècniques estudiades al llarg de l'assignatura i lliuren un informe amb els resultats. Objectius:1234 Setmana:
15 (Fora d'horari lectiu)
Teoria
0h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
3h
Aprenentatge autònom
13h
Examen de conceptes
Es fan dos examens sobre els conceptes bàsics relacionats amb les tècniques estudiades al llarg del curs Objectius:1234 Setmana:
14
Teoria
2h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
14.5h
Metodologia docent
L'aprenentatge es farà mitjançant la combinació de l'explicació teorica i la seva aplicació a un cas real. En les classes de teoria es desenvoluparan els coneixements científics necessaris, mentre que en les classes de laboratori es veurà la seva aplicació per a la resolució de problemes.
Aquests problemes constituiran les practiques de l'assignatura, que es desenvoluparan en part durant les classes de laboratori. La realització de les pràctiques fomenta les competencies transversals lligades al treball en equip i presentació de resultats i serveixen per integrar els diferents coneixements de l'assignatura.
Per aprenentatge de habilitats informàtiques es fa servir el software R.
Mètode d'avaluació
L'avaluació de l'assignatura es realitzarà a partir de la nota obtinguda en els exercicis pràctics realitzats durant el curs (25%), la nota d'un examen parcial per la primera meitat de l'assignatura (25%), la nota d'un examen final que cobreix la segona part de l'assignatura (25%) i la nota obtinguda pel projecte (25%)
Cada exercici comportarà resoldre un qüestionari. Els exercicis efectuats al llarg del curs tenen com a finalitat consolidar l'aprenentatge de les tècniques exposades en classe de teoria. Les pràctiques es realitzaran mitjançant el software R.
El projecte es realitza en grups de dos estudiants, i es tracta de que l'alumne mostri la seva maduresa per resoldre un problema real, utilitzant les tècniques exposades durant el curs. El resultats del treball es presenten mitjançant un informe escrit.
Els dos examens es realitzaran en l'horari marcat per la facultat i s'avaluarà l'assimilació dels conceptes bàsics de l'assignatura.
Per la re-avaluació l'estudiant pot re-examinarse o bé pel primer parcial (25%), o bé nomes pel segon parcial (25%) o bé pels dos examens parcials (50%). La re-avaluació representa doncs, com a màxim 50% de la nota final.