L'objectiu de l'aprenentatge automàtic és desenvolupar mètodes que permetin als sistemes aprendre de les dades i millorar el seu rendiment en presència d'incertesa. Les xarxes neuronals i l'aprenentatge profund són àrees clau de l'aprenentatge automàtic que utilitzen models inspirats en el cervell humà. Organitzant les neurones artificials en capes, aquests models poden aprendre patrons i representacions de les dades, mentre que l'aprenentatge profund permet la solució de problemes més complexos.
Aquest curs introdueix els conceptes fonamentals de les xarxes neuronals i l'aprenentatge profund, incloent-hi arquitectures bàsiques, algoritmes d'aprenentatge i aplicacions pràctiques, proporcionant als estudiants els fonaments necessaris per entendre i aplicar aquests mètodes.
Professorat
Responsable
Luis Antonio Belanche Muñoz (
)
Altres
Joan Llop Palao (
)
Hores setmanals
Teoria
2
Problemes
0
Laboratori
2
Aprenentatge dirigit
0
Aprenentatge autònom
6
Competències
Competències Transversals
Transversals
CT5 [Avaluable] - Ús solvent dels recursos d'informació. Gestionar l'adquisició, l'estructuració, l'anàlisi i la visualització de dades i informació en l'àmbit de l'especialitat i valorar de forma crítica els resultats d'aquesta gestió.
Bàsiques
CB3 - Que els estudiants tinguin la capacitat de reunir i interpretar dades rellevants (normalment dins la seva àrea d'estudi) per emetre judicis que incloguin una reflexió sobre temes rellevants d'índole social, científica o ètica.
Competències Tècniques
Específiques
CE01 - Resoldre els problemes matemàtics que puguin plantejar-se en l'àmbit de la intel·ligència artificial. Aplicar els coneixements sobre: àlgebra, càlcul diferencial i integral i mètodes numèrics; estadística i optimització.
CE12 - Dominar els principis fonamentals i models de la computació i saber-los aplicar per a interpretar, seleccionar, valorar, modelar, i crear nous conceptes, teories, usos i desenvolupaments tecnològics relacionats amb la intel·ligència artificial.
CE13 - Avaluar la complexitat computacional d'un problema, identificar estratègies algorítmiques que puguin conduir a la seva resolució i recomanar, desenvolupar i implementar aquella que garanteixi el millor rendiment d'acord amb els requisits establerts.
CE15 - Adquirir, formalitzar i representar el coneixement humà en una forma computable per a la resolució de problemes mitjançant un sistema informàtic en qualsevol àmbit d'aplicació, particularment els relacionats amb aspectes de computació, percepció i actuació en ambients o entorns intel·ligents.
CE18 - Adquirir i desenvolupar tècniques d'aprenentatge computacional i dissenyar i implementar aplicacions i sistemes que les utilitzin, incloent les dedicades a extracció automàtica d'informació i coneixement a partir de grans volums de dades.
CE20 - Triar i emprar Tècniques de Modelització estadística i anàlisi de dades, avaluant la calidad dels models, validant-i interpretant.
CE26 - Dissenyar i aplicar tècniques de processat i anàlisi d'imatges i visió per computador en l'àmbit de la intel·ligència artificial i la robòtica
Competències Tècniques Generals
Genèriques
CG4 - Raonar, analitzant la realitat i dissenyant algoritmes i formulacions que la modelin. Identificar problemes i construir solucions algorísmiques o matemàtiques vàlides, eventualment noves, integrant el coneixement multidisciplinari necessari, valorant diferents alternatives amb esperit crític, justificant les decisions preses, interpretant i sintetitzant els resultats en el context de l'domini d'aplicació i establint generalitzacions metodològiques a partir de aplicacions concretes.
CG8 - Observar un exercici ètic de la professió en totes les seves facetes, aplicant criteris ètics en el disseny de sistemes, algoritmes, experiments, utilització de dades, d'acord amb els sistemes ètics recomanats pels organismes nacionals i internacionals, amb especial èmfasi en seguretat, robustesa , privacitat, transparència, traçabilitat, prevenció de biaixos (de raça, gènere, religió, territori, etc.) i respecte als drets humans.
CG9 - Afrontar nous reptes amb una visió àmplia de les possibilitats de la carrera professional en l'àmbit de la Intel·ligència Artificial. Desenvolupar l'activitat aplicant criteris de qualitat i millora contínua, i actuar amb rigor en el desenvolupament professional. Adaptar-se als canvis organitzatius o tecnològics. Treballar en situacions de carència d'informació i/o amb restriccions temporals i/o de recursos.
Objectius
Saber identificar un problema d'anàlisi de dades i resoldre'l de principi a fi (end to end)
Competències relacionades:
CG4,
CG8,
CG9,
CT5,
CE13,
CE15,
Conèixer els fonaments teòrics de les xarxes neuronals com a models d'aprenentatge automàtic
Competències relacionades:
CE26,
CG4,
CE01,
CE12,
CE13,
CE18,
CE20,
Conèixer i comprendre els àmbits d'aplicació de les xarxes neuronals i saber desenvolupar solucions a problemes concrets
Competències relacionades:
CG9,
CE12,
CE15,
CE18,
Saber dissenyar solucions per problemes relacionats amb el llenguatge, la imatge o el so
Competències relacionades:
CE26,
CG4,
CG8,
CG9,
CT5,
CB3,
CE13,
CE15,
CE18,
Continguts
Conceptes generals d'aprenentatge automàtic
Repàs als conceptes teòrics generals d'aprenentatge automàtic. L'aprenentatge com a problema d'optimització. Interpretació bayesiana del problema d'aprenentatge. Models lineals generalitzats.
Fonaments de les xarxes neuronals artificials.
Fonaments de les xarxes neuronals artificials. Conceptes biològics bàsics. Model McCulloch-Pitts. Implicacions cognitives i computacionals. Xarxes de Lippmann. Funcions de pèrdua, funcions d'activació.
Xarxes neuronals feed-forward
Xarxes neuronals feed-forward.
Xarxes lineals (I): el Perceptró.
Xarxes lineals (II): la regla Delta.
Perceptrons multicapa i retropropagació.
Descens de gradients i variants.
Altres optimitzadors: pseudo-Newton, CG, Rprop.
Autoencoders y VAEs
Xarxes de funcions de base radial.
Màquines de vectors suport.
Xarxes convolucionals.
Embeddings i espais de representació.
Xarxes neuronals avançades
Xarxes de Hopfield.
Xarxes neuronals per graphs
Activitats
ActivitatActe avaluatiu
Classes teòriques
Desenvolupament de les classes teòriques en les hores assignades. Es tracta de classes eminentment magistrals recolzades per projeccions i pissarra.
Aprenentatge autònom: Hores estimades dedicades a estudiar el material de les classes de teoria.
Exemples d'aplicació dels conceptes vistos a les classes de teoria. Explicacions relatives a o els llenguatges de programació triats. Explicacions addicionals rellevants per l'assignatura: bones pràctiques, metodologia experimental, etc.
Aprenentatge autònom: Hores estimades dedicades a estudiar el material de les classes de laboratori.
Examen parcial (a mitjans de quadrimestre) que cobreix tot el temari vist fins aquell moment, o una mica abans, a criteri del professor. L'examen es farà en aula de laboratori i pot consistir en preguntes de teoria, metodològiques o pràctiques. Objectius:123 Setmana:
9 (Fora d'horari lectiu)
Teoria
0h
Problemes
0h
Laboratori
2h
Aprenentatge dirigit
0h
Aprenentatge autònom
0h
Examen final
Examen final (en època d'exàmens finals) que cobreix tot el temari vist a l'assignatura. L'examen es farà en aula de teoria i pot consistir en preguntes de teoria o metodològiques. Objectius:1234 Setmana:
15 (Fora d'horari lectiu)
Teoria
2h
Problemes
0h
Laboratori
0h
Aprenentatge dirigit
0h
Aprenentatge autònom
0h
Pràctica de l'assignatura
Desenvolupament d'un treball pràctica on demostrar que es saben aplicar els conceptes, mètodes i tècniques propis de l'assignatura.
Aprenentatge autònom: Hores estimades dedicades a realitzar la pràctica de l'assignatura.
El curs aprofundeix en un dels paradigmes d'aprenentatge automàtic més importants avui dia: les xarxes neuronals artificials, amb una base sòlida en probabilitat, estadística i matemàtiques. La teoria s'introdueix a classes magistrals on el professor exposa els conceptes. Aquests conceptes es posen en pràctica a les classes de laboratori, on l'alumne aprèn a desenvolupar solucions d'aprenentatge automàtic a problemes reals de certa complexitat. Els estudiants han de treballar i lliurar un projecte al final del curs.
Mètode d'avaluació
El curs es qualifica de la següent manera:
P = Nota de l'examen (control) parcial
F = Nota de l'examen final
T = Nota dels treball pràctics
Nota exàmens = 0.6F+0.4P si F< P ó F=P
F si F>P
Nota final = 40% T + 60% Nota exàmens
Reavaluació: només es poden presentar a la reavaluació aquelles persones que, havent-se presentat a l'examen final (no val un NP), tinguin una nota exàmens menor a 4. La nota màxima d'exàmens que es pot obtenir a la reavaluació és un 7.