CT4 - Gestionar l'adquisició, l'estructuració, l'anàlisi i la visualització de dades i informació de l'àmbit d'especialitat, i valorar de forma crítica els resultats d'aquesta gestió.
Tercera llengua
CT5 - Conèixer una tercera llengua, preferentment l'anglès, amb un nivell adequat oral i escrit i en consonància amb les necessitats que tindran els titulats i titulades.
Bàsiques
CB6 - Que els estudiants sàpiguen aplicar els coneixements adquirits y la seva capacitat de resolució de problemes en entorns nous o poc coneguts dins de contexts més amplis (o multidisciplinaris) relacionats amb la seva àrea d'estudi.
CB7 - Que els estudiants siguin capaços d'integrar coneixements i enfrontar-se a la complexitat de formular judicis a partir d'una informació que, essent incomplerta o limitada, inclogui reflexions sobre les responsabilitats socials i ètiques vinculades a l'aplicació dels seus coneixements i judicis.
CB10 - Posseir i comprendre coneixements que aportin una base o oportunitat de ser originals en el desenvolupament i/o aplicació d'idees, sovint en un context de recerca.
Competències Tècniques Generals
Genèriques
CG4 - Dissenyar i posar en marxa projectes de ciència de dades en dominis específics de forma innovadora
Competències Tècniques
Específiques
CE1 - Desenvolupar algoritmes eficients fonamentats en el coneixement i comprensió de la teoria de la complexitat computacional i les principals estructures de dades, dins de l'àmbit de ciència de dades
CE2 - Aplicar els fonaments de la gestió i processament de dades en un problema de ciència de dades
CE5 - Modelar, dissenyar i implementar sistemes complexos de dades, incloent-hi la visualització de dades
CE6 - Dissenyar el procés de Ciència de Dades i aplicar metodologies científiques per a obtenir conclusions sobre poblacions i prendre decisions en conseqüència, a partir de dades estructurades o no estructurades i potencialment emmagatzemades en formats heterogenis.
CE9 - Aplicar mètodes adequats per a l'anàlisi d'altres tipus de formats, com ara processos i grafs, dins l'àmbit de ciència de dades
Objectius
Introduce the student to the algorithmic, computational, and statistical problems that arise in the analysis of biological data.
Competències relacionades:
CT4,
CT5,
CG4,
CE5,
CE6,
CE9,
CB6,
CB7,
CB10,
Reinforce the knowledge of discrete structures, algorithmic techniques, and statistical techniques that the student may have from previous courses.
Competències relacionades:
CT5,
CE1,
CE2,
CE9,
Hardy-Weinberg equilibrium
Hardy-Weinberg law. Hardy-Weinberg assumptions. Multiple alleles. Statistical tests for Hardy-Weinberg equilibrium: chi-square, exact and likelihood-ratio tests. Graphical representations. Disequilibrium coefficients: the inbreeding coefficient, Weir's D. R-package HardyWeinberg.
Linkage disequilibrium and Phase estimation
Definition of linkage disequilibrium (LD). Measures for LD. Estimation of LD by maximum likelihood. Haplotypes. The HapMap project. Graphics for LD. The LD heatmap. Phase ambiguity for double heterozygotes. Phase estimation with the EM algorithm. Estimation of haplotype frequencies. R-package haplo.stats.
Population substructure
Definition of population substructure. Population substructure and Hardy-Weinberg equilibrium. Population substructure and LD. Statistical methods for detecting substructure. Multidimensional scaling. Metric and non-metric multidimensional scaling. Euclidean distance matrices. Stress. Graphical representations.
Family relationships and allele sharing
Identity by state (IBS) and Identity by descent (IBD). Kinship coefficients. Allele sharing. Detection of family relationships. Graphical representations.
Genetic association analysis
Disease-marker association studies. Genetic models: dominant, co-dominant and recessive models. Testing models with chi-square tests. The alleles test and the Cochran-Armitage trend test. Genome-wide assocation tests.
Introduction to Epidemiology
To define epidemiology, understand its core principles, and appreciate its relevance in public health.
Measures of Disease Frequency
To understand and calculate various measures used to quantify disease occurrence in populations.
Analytical Study Designs and Their Core Measures I
To understand the major analytical study designs and the primary measures of association and effect derived from them.
Analytical Study Designs and Their Core Measures II
To understand the major analytical study designs and the primary measures of association and effect derived from them.
Bias, Confounding, and Causality
To understand potential threats to validity in epidemiological studies and the criteria for establishing causality.
Introduction to Risk Assessment
To define risk assessment, understand its framework, and appreciate its role in public health decision-making
Applications and Future Directions
To review practical applications of epidemiology and risk assessment and discuss emerging challenges
All classes consist of a theoretical session (a lecture in which the professor introduces new concepts or techniques and detailed examples illustrating them) followed by a practical session (in which the students work on the examples and exercises proposed in the lecture). On the average, two hours a week are dedicated to theory and one hour a week to practice, and the professor allocates them according to the subject matter. Students are required to take an active part in class and to submit the exercises at the end of each class.
Mètode d'avaluació
For the first half (Statistical Genetics), students are evaluated in a mid-term exam. Every student is required to submit one exercise each week, graded from 0 to 10, and the grade for the first part consists of 30% for the exercises and 70% for the mid-term exam, also graded from 0 to 10. In the second half (Epidemiology), students are evaluated during class, and in a final exam. The final grade of the lecture is made from 50% of the Statistical Genetics and 50% of the grade in Epidemiology.
Statistical Approach to Genetic Epidemiology -
Ziegler, Andreas; König, Inke R., Wiley ,
2011.
ISBN: 9783527633654
Capacitats prèvies
Basic knowledge of algorithms and data structures.
Basic knowledge of statistics.
Basic knowledge of the Python programming language.
Basic knowledge of the R programming language.