Investigación Operativa

Usted está aquí

Créditos
6
Tipos
Complementaria de especialidad (Sistemas de Información)
Requisitos
  • Prerrequisito: PE
Departamento
EIO
En el entorno de organizaciones complejas de alcance medio y grande en la industria, la administración y los negocios, los resultados de la toma de decisiones que pueden incidir en su funcionamiento / rendimiento es de suma importancia para sus responsables . La Investigación Operativa es una disciplina orientada a proporcionar herramientas de elaboración, de análisis y de resolución eficiente de modelos de estos sistemas mediante las cuales se puede medir cuantitativamente los resultados de las decisiones de la dirección de las organizaciones. Hoy en día resulta clave la integración de esta clase de sistemas de ayuda a la toma de decisiones dentro de los diferentes sistemas de información que pueden operar en las organizaciones. El curso se inicia presentando un caso de estudio con el que ilustrar estos conceptos y continúa con la exposición de modelos asentados en la Investigación Operativa y sus técnicas de resolución eficiente. A lo largo del curso los estudiantes desarrollarán y resolverán uno de estos modelos adaptado a las necesidades del caso real de una organización y se evaluará y discutirá su interacción con los sistemas de información presentes en ella.

Profesores

Responsable

  • Esteve Codina Sancho ( )

Otros

  • Bhumika Ashvinbhai Patel ( )
  • Joan Garcia Subirana ( )

Horas semanales

Teoría
2
Problemas
1
Laboratorio
1
Aprendizaje dirigido
0.4
Aprendizaje autónomo
5.6

Competencias

Competencias Técnicas de cada especialidad

Especialidad sistemas de información

  • CSI2 - Integrar soluciones de Tecnologías de la Información y las Comunicaciones y procesos empresariales para satisfacer las necesidades de información de las organizaciones, permitiéndoles llegar a sus objetivos de forma efectiva
    • CSI2.1 - Demostrar comprensión y aplicar los principios y las técnicas de gestión de calidad y de innovación tecnológica en las organizaciones.
    • CSI2.2 - Concebir, desplegar, organizar y gestionar sistemas y servicios informáticos, en contextos empresariales o institucionales, para mejorar sus procesos de negocio, responsabilizarse y liderar su puesta en marcha, y su mejora continua; y valorar su impacto económico y social.
    • CSI2.6 - Demostrar conocimiento y capacidad de aplicación de los sistemas de ayuda a la toma de decisiones y de bussines intelligence.
  • CSI3 - Determinar los requisitos de los sistemas de información y comunicación de una organización, atendiendo a aspectos de seguridad y cumplimiento de la normativa y de la legislación vigente.
    • CSI3.5 - Proponer y coordinar cambios para mejorar la explotación del sistema y de las aplicaciones.
  • CSI1 - Demostrar comprensión y aplicar los principios y las prácticas de las organizaciones, de manera que puedan ejercer como enlace entre las comunidades técnica y de gestión de una organización, y participar activamente en la formación de los usuarios.

Especialidad de computación

  • CCO1 - Tener un conocimiento profundo de los principios fundamentales y de los modelos de la computación y saberlos aplicar para interpretar, seleccionar, valorar, modelar y crear nuevos conceptos, teorías, usos y desarrollos tecnológicos relacionados con la informática.
    • CCO1.3 - Definir, evaluar y seleccionar plataformas de desarrollo y producción hardware y software para el desarrollo de aplicaciones y servicios informáticos de diversa complejidad.
  • CCO2 - Desarrollar de forma efectiva y eficiente los algoritmos y el software apropiados para resolver problemas complejos de computación.
    • CCO2.4 - Demostrar conocimiento y desarrollar técnicas de aprendizaje computacional, y diseñar e implementar aplicaciones y sistemas que las utilicen, incluyendo las dedicadas a la extracción automática de información y conocimiento a partir de grandes volúmenes de datos.

Competencias Transversales

Actitud frente al trabajo

  • G8 [Avaluable] - Tener motivación para la realización profesional y para afrontar nuevos retos, así como una visión amplia de las posibilidades de la carrera profesional en el ámbito de la Ingeniería en Informática. Tener motivación por la calidad y la mejora continua, y actuar con rigor en el desarrollo profesional. Capacidad de adaptación a los cambios organizativos o tecnológicos. Capacidad de trabajar en situaciones de falta de información y/o con restricciones temporales y/o de recursos.
    • G8.3 - Tener motivación para el desarrollo profesional y para afrontar nuevos retos. Tener motivación para la mejora continua. Disponer de capacidad de trabajo en situaciones de falta de información.

Uso solvente de los recursos de información

  • G6 [Avaluable] - Gestionar la adquisición, la estructuración, el análisis y la visualización de datos e información del ámbito de la ingeniería informática y valorar de forma crítica los resultados de esta gestión.
    • G6.3 - Planificar y utilizar la información necesaria para un trabajo académico (por ejemplo, para el trabajo de final de grado) a partir de una reflexión crítica sobre los recursos de información utilizados. Gestionar la información de manera competente, independiente y autónoma. Evaluar la información encontrada e identificar las lagunas presentes.

Objetivos

  1. Conocer la metodología básica y el ámbito de aplicación de la Investigación Operativa
    Competencias relacionadas: CSI1, G8.3,
    Subcompetences:
    • Distinguir las diferentes etapas en que consiste un proyecto de Investigación Operativa
    • Papel de los modelos de Investigación Operativa dentro de los sistemas de apoyo a las decisiones
    • Etapa de toma de datos y tratamiento de la información necesaria para formular un modelo de Investigación Operativa
  2. Conocer modelos simples de IO, sus soluciones y particularidades
    Competencias relacionadas: CCO2.4, CSI3.5, G8.3,
    Subcompetences:
    • Conocer modelos simples de programación lineal: problemas de producción y de mezclas
    • Conocer modelos simples en programación no lineal: problema del volumen máximo de un cilindro.
    • Conocer modelos simples de programación lineal entera: problema de la mochila y problemas de carga fija
  3. Conocer e identificar los componentes de un problema de optimización
    Competencias relacionadas: CCO1.3, CCO2.4,
    Subcompetences:
    • Distinguir entre variables de decisión y parámetros de un problema de optimización
    • Conocer y saber utilizar lenguajes de representación algebraica de problemas de optimización para la definición y resolución de modelos basados ​​en la optimización
    • Conocer el papel central de un problema de optimización como herramienta dentro de los procesos de decisión
  4. Identificación de objetivos en un proceso de decisión. Saber expresar como restricciones, tanto lineales como no lineales, las condiciones a cumplir por las variables de decisión del modelo. Formular models multiobjetivo y de programación por objetivos.
    Competencias relacionadas: CSI2.6, CSI1, CSI2.1,
    Subcompetences:
    • Formulación de constricciones lineales y no lineales en un modelo
    • Identificar los múltiples objetivos que puedan intervenir en un modelo de toma de decisiones y relación con los modelos de programación lineal
    • Identificación de variables de decisión y parámetros de un modelo
    • Para problemas con dos objetivos saber determinar la frontera de optimalidad Pareto
    • Conocer e interpretar los resultados y la información proporcionada por un modelo con múltiples objetivos
    • Conocer la formulación básica de un problema multiobjetivo
    • Ser capaz de definir modelos de programación lineal adecuados para un sistema de apoyo a la decisión y traducirlos usando lenguajes de manipulación algebraicos,
  5. Conocer la estructura y propiedades de los problemas de programación lineal y no lineal.
    Competencias relacionadas: CCO2.4, CSI1,
    Subcompetences:
    • Conocer las características distintivas de los problemas con no linealidades
    • Conocer modelos simples de programación lineal: problema de producción, problema de mezclas
    • Uso de lenguajes de manipualció algebraicos y hojas de cálculo. Identificar los tipos de soluciones proporcionados por los lenguajes de manipulación algebraicos para problemas de programación lineal
    • Conocer la diferencia entre óptimos locales y globales
    • Conocer la forma standard de un problema de programación lineal. Variables de holgura y exceso
    • Conocer y saber calcular las soluciones básicas factibles de un problema de programación lineal
    • Conocer los tipos de soluciones que puede tener un problema de programación lineal: soluciones únicas, soluciones alternativas, problemas infactibles, problemas no acotados
  6. Conocer y saber aplicar el método del simplex para resolver problemas de programación lineal
    Competencias relacionadas: CCO2.4,
    Subcompetences:
    • Objeto de los costes reducidos. Reconocer una solución básica como solución óptima de un problema de programación lineal. Reconocer cuando hay óptimos alternativos
    • Efectuar iteraciones del método del simplex. Concepto de cambio de base. Cálculo de los costes reducidos
    • Concepto de base factible. Conocer y distinguir entre variables básicas y no básicas
  7. Conocer y saber resolver problemas de programación lineal en los que las variables están asociadas a un grafo. Problemas de flujos sobre redes.
    Competencias relacionadas: CCO2.4, CSI2.2,
    Subcompetences:
    • Conocer la estructura de de las soluciones básicas de los problemas de flujos sobre redes. Costes asociados a los nudos de los árboles y variables duales. Cálculo de los coeficientes de costes reducidos. Casos de uno o más artículos.
    • Aplicación de los algoritmos de caminos mínimos. (Dijkstra y correctores de etiquetas)
    • Conocer la formulación de problemas de flujos en grafos bipartitos. Conocer la formulación del problema de coste mínimo.
    • Conocer el papel de las matrices de incidencias nudos-arcos
    • Problemas de flujos sobre redes con capacidades asociadas a los arcos. Teorema del Flujo-máximo Corte-mínimo
  8. Conocer y aplicar técnicas básicas para resolver problemas lineales con variables enteras
    Competencias relacionadas: CCO1.3, CCO2.4,
    Subcompetences:
    • Conocer y poder aplicar el algoritmo de Branch and Bound
    • Conocer los modelos básicos de recubrimiento en forma de problema de programación lineal entera
    • Saber formular condiciones lógicas en forma de constricciones en un modelo programación lineal entera
  9. Conocer e identificar los inputs y los outputs de los modelos de Investigación Operativa subyacentes a diversos sistemas de información y de ayuda a la toma de decisiones vistos en las sesiones prácticas.
    Competencias relacionadas: G6.3, CCO1.3, CSI1, CSI2.2, CSI3.5,
    Subcompetences:
    • Conocer las propiedades de los modelos de Investigación Operativa vistos en las sesiones prácticas.
    • Ante un conjunto de necesidades de una organización, analizar si los modelos de Investigación Operativa vistos en las sesiones prácticas son suficientes para satisfacer estas necesidades. Identificar deficiencias y ausencias en la modelización.
    • Dados determinados requerimientos de una organización en relación a un sistema de ayuda a la toma de decisiones, adaptar y / o ampliar los modelos de Investigación Operativa vistos en las sesiones prácticas para satisfacer los requerimientos.
  10. Ser capaz de aplicar métodos heurísticos para problemas de programación lineal entera
    Competencias relacionadas: CSI2.6, CCO1.3, CCO2.4,
    Subcompetences:
    • Aplicar heurísticas de intercambio para el problema del viajante de comercio
    • Aplicar heurísticas para problemas de localización de plantas
  11. Conocer y poder aplicar diferentes tipos de metaheurísticas vistos en la asignatura
    Competencias relacionadas: CSI2.6, CCO1.3, CCO2.4,
    Subcompetences:
    • Saber aplicar la técnica de recocido simulado para resolver problemas de routing
    • Saber aplicar la técnica de tabú search para resolver problemas de programación lineal entera
  12. Ser capaz de utilizar eficazmente los recursos de información en I.O.
    Competencias relacionadas: G6.3,
    Subcompetences:
    • Saber utilizar y reconocer la información adecuada para la realización de un trabajo
    • Saber el tipo de información que puede proporcionar una fuente
    • Análisis y síntesis de una determinada fuente de información y valor en relación a la consecución de un objetivo (realización de un trabajo, tarea o proyecto)
  13. Tener una actitud apropiada y motivación hacia el trabajo
    Competencias relacionadas: G8.3,
    Subcompetences:
    • Motivación por la responsabilidad, la calidad en el propio trabajo y la realización profesional
    • Adaptación a la falta de información ya las restricciones materiales y temporales
    • Capacidad de adaptación a los cambios organizativos, tecnológicos y trabajo en equipo

Contenidos

  1. Introducción a la modelización en la toma de decisiones:
    La modelización en el proceso de toma de decisiones. Modelos de la Investigación Operativa. El ciclo metodológico de la investigación operativa
  2. Programación continúa. Propiedades y métodos
    Características de los problemas de optimización. Formulación de problemas de optimización. Técnicas de programación matemática. Formulación de problemas de PL. Resolución de problemas de PL. La geometría de la PL. El método del símplex: soluciones básicas factibles y puntos extremos. Análisis de sensibilidad. Presencia de no linealidades en los modelos.
  3. Modelos de programación continua y sistemas de apoyo a la toma de decisiones
    Ejemplos de problemas de PL: planificación de la producción; problema de inversión; problemas de transporte; problemas de mezcla; problemas de inventario. Problemas de flujos sobre redes. Problemas multiobjetivo. Programación por objetivos. Presencia de no linealidades en los modelos.
  4. Programación Lineal Entera
    Propiedades de los problemas de Programación Lineal Entera. Algunos problemas de PLENO: problema de la planificación de trabajadores; problemas de routing problemas de coste fijo y de localización, Algoritmos de PLENO: planos secantes; algoritmo del Branch & Bound
  5. Métodos Heurísticos para la resolución de problemas en PLE
    Heurísticas constructivas: Métodos Greedy. Cerca local. Metaheurísticas: más allá del óptimo local. El método del templado simulado. Búsqueda tabú, Algoritmos genéticos. Otros métodes. Aplicaciones de heurísticas per a problemas de routing y otros.
  6. Búsqueda y evaluación de información para la realización de un trabajo en I.O.
    Buscadores académicos. Bases de datos y revistas electrónicas. Evaluación de la información
  7. Motivación y actitud para el trabajo en I.O.
    Motivación por la responsabilidad, la calidad en el propio trabajo y la realización profesional. Capacidad de adaptación a los cambios organizativos, tecnológicos. Trabajo en equipo. Adaptación a la falta de información y a las limitaciones materiales y temporales

Actividades

Actividad Acto evaluativo


Bloque 1. Presentación de objetivos y de modelos básicos de IO

Seguimiento de las exposiciones y revisión del material proprocionat por las correspondientes sesiones. Asimilación del papel de los problemas de optimización como fuente de modelización.
  • Teoría: Descripción de los objetivos de la Investigación Operativa como disciplina. Descripción de las etapas del proceso metodológico de formulación de un modelo. Validación de un modelo. Presentación de un caso de estudio. Descripción y análisis de diversos casos de estudio implicados
  • Aprendizaje autónomo: Lectura y estudio de material previo a las sesiones de teoría
Objetivos: 1 3 2
Contenidos:
Teoría
1h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
1h

Análisis de fuentes de información

Análisis y evaluación de la información proporcionada de determinadas referencias (paquetes de software / referencias que pueden aportar soluciones al Trabajo de Curso.
  • Teoría: Evaluación del valor y carencias de la información seleccionada.
  • Aprendizaje autónomo: Identificación del valor y de las lagunas de información sobre la finalidad del Trabajo de Curso
Objetivos: 12
Contenidos:
Teoría
0.5h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
6h

Bloque 2. Modelos de Optimización Continua y sistemas de ayuda a la toma de decisiones

Seguimiento de los modelos expuestos en las sesiones de teoría. Resolución individual y monitorizada de ejercicios de modelización. En las sesiones de laboratorio, entrenamiento en el uso de lenguajes de representación algebraica.
  • Teoría: Descripción de modelos en programación lineal y presencia de no linealidades. Exposición del principio de optimalidad Pareto. Minimización de la norma L1. Exposición de la programación por objetivos y del peor caso posible
  • Problemas: Formulación de problemas y modelización de casos de estudio
  • Aprendizaje autónomo: Lectura y estudio de material previo a sesiones de teoría. Preparación y lectura del material para ejercicios de laboratorio
Objetivos: 1 3 4
Contenidos:
Teoría
4h
Problemas
2h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
6h

Uso de buscadores de referencias, de BD y de Revistas Electrónicas

Búsqueda de publicaciones de determinados autores en relación al Trabajo de Curso. Visionado de vídeos http://bibliotecnica.upc.edu/habilitats/eines-de-cerca-dinformacio # 4 http://bibliotecnica.upc.edu/habilitats/l039estrategia-de-cerca
  • Teoría: Se proporcionan determinados autores y temas en relación al Trabajo de Curso
  • Aprendizaje autónomo: Uso de buscadores y primer análisis de referencias
Objetivos: 12
Contenidos:
Teoría
0.5h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
4h

Evaluación de la búsqueda de referencias en relación al Trabajo de Curso

Entrega de informe con las 5 referencias más significativas y con detalle de las herramientas de búsqueda usadas para encontrarlas
Objetivos: 12
Semana: 4
Tipo: examen de laboratorio
Teoría
0h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Bloque 3. Problemas de Programación Continúa

Seguimiento de clases de teoría con el apoyo de material docente elaborado específicamente. Asimilación de los conceptos de base factible, base óptima, óptimo local y global. Capacidad para efectuar pasos del algoritmo del símplex. Resolución individual de problemas y seguimiento de sesiones de problemas. Capacidad de definir problemas de programación lineal y no lineal usando lenguajes algebraicos y de resolverlos a las sesiones de laboratorio
  • Teoría: Caracterización de problemas de programación lineal. Propiedades básicas de los problemas de programación lineal. Concepto de región factible. Óptimos únicos y alternativos. Concepto de vértice de una región poliédrica. Ejemplos. Bases y soluciones básicas algoritmo del simplex. Desarrollo en las sesiones de teoría de la formulación algebraica básica. Ejemplos de iteraciones con el algoritmo del símplex. Método de las variables artificiales. Presencia de no linealidades. Características de las soluciones.
  • Problemas: Resolución de problemas gráficamente en dos dimensiones. Iteraciones con el algoritmo del simplex. Resolución de problemas simples con lenguajes algebraicos y avance de conceptos para clases de laboratorio
  • Aprendizaje autónomo: Trabajo por parte del estudiante con material docente y colección de problemas. Preparación de sesiones de laboratorio. Ejercicios por cuenta propia.
Objetivos: 5 6
Contenidos:
Teoría
5h
Problemas
3h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
8h

Actitud y motivación hacia el trabajo. A1

Los estudiantes evalúan ejercicios de laboratorio entregados de acuerdo a directrices recogidas en una rúbrica.
  • Laboratorio: Evaluación de la calidad de ejercicios
  • Aprendizaje autónomo: Preparación y asimilación por parte del estudiante
Objetivos: 13
Contenidos:
Teoría
0h
Problemas
0h
Laboratorio
1h
Aprendizaje dirigido
0h
Aprendizaje autónomo
3h

Evaluación de las fuentes de información

Entrega de un informe haciendo la evaluación
Objetivos: 12
Semana: 6
Tipo: examen de laboratorio
Teoría
0h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Evaluación actitud y motivación hacia el trabajo. A1

Uso de rúbricas
Objetivos: 13
Semana: 7
Tipo: examen de laboratorio
Teoría
0h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Bloque 4. Problemas de flujo en redes

Efectuar iteraciones del simplex para el problema de min-coste. aplicación de algoritmos de caminos mínimos. aplicación del algoritmo de max-flow min.cut
  • Teoría: Exposición del modelo de min-coste. Aplicación del algoritmo del símplex. Exposición y derivación de los algoritmos de caminos mínimos. Ilustración del teorema de max-flow min-cut
  • Problemas: Ejercicios y tests de seguimiento de los métodos y algoritmos expuestos
  • Aprendizaje autónomo: Revisión del material presentado en clases de teoría y preparación de tests de seguimiento. Ejercicios por cuenta propia.
Objetivos: 1 7
Contenidos:
Teoría
4h
Problemas
3h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
7h

Evaluación de la práctica de laboratorio 1

Se entregará un cuestionario cumplimentado al final de la sesión. Este cuestionario será puntuable.
Objetivos: 3 5 6 4 7 2
Semana: 8
Tipo: entrega
Teoría
0h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Parcial 1

1 Prueba consistente en problemas para los bloques 1,2,3 y 4 de la asignatura y la parte correspondiente del bloque 8 relacionada con los bloques 1,2,3 y 4
Objetivos: 1 3 5 6 4 7 2
Semana: 8
Tipo: examen de teoría
Teoría
2h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
4h

Bloque 5. Modelización en programación lineal entera

Adquirir capacidad de modelizar usando variables binarias condiciones de tipo lógico. Tener como referencia los modelos presentados en las sesiones de teoría para poder emprender desarrollos y modelizaciones propias
  • Teoría: Exposición de los modelos de recubrimiento y partición de conjuntos y de la metodología para reflejar condiciones de tipo lógico con variables enteras. Exposición de los modelos de carga fija.
  • Problemas: Modelización de problemas con variables enteras / binarias dentro de una colección de problemas
  • Laboratorio: Formulación, implementación y resolución de un modelo previamente especificado en un guión de prácticas de laboratorio y de variantes propuestas. Análisis de los resultados
  • Aprendizaje autónomo: Lectura y estudio del material presentado en las sesiones de teoría. Resolución individual, de ejercicios de modelización. Resolución de las modelizaciones usando lenguajes algebraicos de modelado. Preparación y lectura del material para las sesiones de laboratorio
Objetivos: 1 9
Contenidos:
Teoría
4h
Problemas
2h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
6h

Actitud y motivación hacia el trabajo. A2

Análisis de los cambios propuestos por el profesor en el Trabajo de Curso y propuesta de cambios a realizar en un periodo de tiempo limitado. Discusión con otros grupos de trabajo de la adecuación de las soluciones adoptadas
  • Laboratorio: Sesion de aprendizaje colaborativo
  • Aprendizaje autónomo: Análisis de los cambios propuestos el profesor en el trabajo de curso. Preparación previa a la sesión
Objetivos: 13
Contenidos:
Teoría
0h
Problemas
0h
Laboratorio
2h
Aprendizaje dirigido
0h
Aprendizaje autónomo
5h

Evaluación actitud y motivación hacia el trabajo. A2

Entrega de informe al final de sesión parenentatge colaborativo
Objetivos: 13
Semana: 11
Tipo: examen de laboratorio
Teoría
0h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Bloque 6. Problemas de Programación Lineal Entera

Asimilación de los conceptos de ramificación y acotación. Efectuar iteraciones del algoritmo de Branch and Bound con problemas pequeños.
  • Teoría: Exposición de propiedades básicas de los problemas de programaciói lineal entera y del concepto de relajación lineal. Ilustración del funcionamiento del algoritmo de branch and bound.
  • Problemas: Resolución de pequeños problemas de programación lineal entera.
  • Aprendizaje autónomo: Lectura y estudio del material de las sesiones de teoría. Preparación de ejercicios para clase de problemas
Objetivos: 8
Contenidos:
Teoría
2h
Problemas
2h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
4h

Actitud y motivación hacia el trabajo. A3

Presentación oral del trabajo de curso en un tiempo limitado (10min por grupo de trabajo)
  • Laboratorio: Presentación de trabajos de curso y discusión
  • Aprendizaje autónomo: Preparación por parte del estudiante
Objetivos: 13
Contenidos:
Teoría
0h
Problemas
0h
Laboratorio
2h
Aprendizaje dirigido
0h
Aprendizaje autónomo
5h

Evaluación actitud y motivación hacia el trabajo. A3

Presentación oral
Objetivos: 13
Semana: 12
Tipo: examen de laboratorio
Teoría
0h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Bloque 7. Métodos heurísticos para problemas de programación lineal entera. Metaheurísticas

Conocer los principales principios de construcción heurística de soluciones. Saber construir algoritmos basados ​​en metaheurísticas descritas. Método del recocido simulado, búsqueda tabú, búsqueda greedy.
  • Teoría: Métodos heurísticos para los problemas de localización de plantas y del viajante de comercio. Métodos de intercambio. Construcción de soluciones. Heurística de Christofides. Método del recocido simulado. Buscar tabú, Buscar Greedy
  • Problemas: Resolver a mano casos de pequeña dimensión, aplicando las heurísticas vistas.
  • Aprendizaje autónomo: Seguimiento del material expuesto y preparación de material para las sesiones de laboratorio
Objetivos: 9
Contenidos:
Teoría
4h
Problemas
2h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
6h

Evaluación de la práctica de laboratorio 2

Se entregará un cuestionario cumplimentado al final de la sesión. Este cuestionario será puntuable.
Objetivos: 4 8 9 10 11 2
Semana: 13
Tipo: entrega
Teoría
0h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Prácticas de laboratorio 1 y 2

Lectura previa del cuestionario y preparación de la práctica. Ejecución del ejercicio y entrega del cuestionario cumplimentado
  • Laboratorio: Realización de las prácticas en sesiones de aula PC. Modelización usando lenguajes de representación algebraica. Resolución y análisis de las soluciones Construcción de un algoritmo basado en un procedimiento metaheuristic visto en clase
  • Aprendizaje dirigido: Elaboración guiada de las prácticas
  • Aprendizaje autónomo: Preparación previa por estudiante
Objetivos: 3 5 6 7 8 10
Contenidos:
Teoría
0h
Problemas
0h
Laboratorio
4h
Aprendizaje dirigido
2h
Aprendizaje autónomo
4h

Bloque 8. Trabajo de curso.

Asimilar las diferentes etapas de formulación, análisis y ensayo de un modelo de optimización orientado a formar parte de un sistema de apoyo a la toma de decisiones. Análisis del rendimiento computacional de las herramientas utilizadas y de las prestaciones del modelo desarrollado. Desarrollo de las competencias asociadas a esta asignatura. El Trabajo de grupo se desarrollará en grupos de dos.
  • Teoría: Sesiones de apoyo y aclaración de conceptos necesarios para las tareas de formulación y resolución de un caso de estudio. Desarrollo de competencias transversales asociadas a la asignatura.
  • Laboratorio: Sesiones para la implementación de las formulaciones de los modelos. Desarrollo de competencias transversales de la asignatura
  • Aprendizaje autónomo: Preparación de material. Estudio y análisis de un pequeño caso de estudio. Estudio y refuerzo de conceptos vistos los contenidos de la asignatura
Objetivos: 1 3 4 7 9 10 11
Contenidos:
Teoría
2h
Problemas
0h
Laboratorio
6h
Aprendizaje dirigido
0h
Aprendizaje autónomo
8h

Evaluación del Trabajo de curso

Se planteará a los estudiantes el desarrollo de un modelo. Se dedicaran sesiones de laboratorio para su seguimiento. Objetivos específicos: - Desarrollo de un modelo basado en problemas de optimización como parte integrante de un sistema de ayuda a la toma de decisiones. - Analizar las prestaciones computacionales del modelo desarrollado para su uso correcto en el entorno de los sistemas de ayuda a la toma de decisiones.
Objetivos: 1 3 4
Semana: 14
Tipo: examen de laboratorio
Teoría
0h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Parcial 2

Prueba consistente en problemas para los bloques 5,6 y 7 de la asignatura y la parte correspondiente del bloque 8 relacionada con los bloques 5,6 y 7.
Objetivos: 8 9 10 11
Semana: 14
Tipo: examen de teoría
Teoría
2h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
4h

Examen Final

Cubre todos los bloques de la asignatura
Objetivos: 1 3 5 6 4 7 8 9 10 11 2
Semana: 15 (Fuera de horario lectivo)
Tipo: examen final
Teoría
0h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
2h
Aprendizaje autónomo
6h

Metodología docente

El aprendizaje se hará siguiendo la metodología de los casos, a partir de problemas en el entorno de la Investigación Operativa. A partir de estos problemas se desarrollarán los conocimientos formales necesarios en clases de teoría, presenciales y expositivas, y su aplicación en las clases de laboratorio, de tal manera que reforzará la asimilación de los diferentes conceptos. Se utilizará software disponibles en la UPC (AMPL, OPL/Studio, excel,).

Método de evaluación

Ver Addenda para el caso del curso académico 2020-21

NT = Nota de Teoría
NL = Nota de Laboratorio. La nota de laboratorio estará formada por las notas de las dos prácticas al 50% cada una.
NTC = Nota del Trabajo de Curso
NC = Nota relativa a las competencias

N = 0.45 * NT + 0.2 * NL + 0.25 * NTC + 0.1*NC

Si 0.5 * NExP1 + 0.5*NExP2> = 5 entonces no es necesario presentarse al examen final

NT = Max (NExF, 0.5 * NExP1 + 0.5N*ExP2)

NExF = Nota del examen final
NExP1, NExP2 = Notas de los exámenes parciales 1 y 2.

La nota NC dependerá del grado alcanzado en las competencias transversales asignadas a ala asignatura y se repartirá a partes iguales entre éstas (Hay dos competencias C1, C2. La nota NC se calculará como NC = 0.5*NC1 + 0.5*NC2

Para una competencia i determinada hay la siguiente correspondencia entre la valoración (A,B,C,D)
de la competencia y la nota NC1, NC2 que pasa a formar parte de la nota final:

Un nivel A equivale a una nota NC1 (o NC2) que estará entre 8,5 y 10
Un nivel B equivale a una nota NC1 (o NC2) que estará entre 6,5 y <8,5
Un nivel C equivale a una nota NC1 (o NC2) que estará entre 5 y <6,5
Un nivel D equivale a una nota NC1 (o NC2) que estará entre 0 y < 5

La nota NC1, NC2 de las competencias se obtienen a partir de las actividades del Bloque 8
(trabajo de Curso) i de las Prácticas de laboratorio.

La nota NC1, NC2 obedecerá a la siguiente expresión:

NCi = 0.25 * NTC + 0.10*NL + Actividades específicas de la competencia; i=1,2

Bibliografía

Básica:

Complementaria:

Web links

Capacidades previas

Los alumnos deben tener los conocimientos suficientes de álgebra para poder asimilar los métodos algoritmcs expuestos También deben ser capaces de leer inglés a nivel técnico

Adenda

Contenidos

NO HI HA CANVIS RESPECTE LA INFORMACIÓ PUBLICADA A LA GUIA DOCENT

Metodología docente

NO HI HA CANVIS RESPECTE LA INFORMACIÓ PUBLICADA A LA GUIA DOCENT

Método de evaluación

NT = Nota de Teoria NL = Nota de Laboratori. La nota de laboratori estarà formada per les notes de les dues pràctiques al 50% cada una NTC = Nota del Treball de Curs NC = Nota relativa a les competències. N= 0.45*NT + 0.2*NL + 0.25*NTC + 0.1*NC Si NExP1 >= 5 llavors no cal presentar-se a l'examen final de la Part 1 NT = 0.5 Max (NExF1, NExP1) + 0.5*NExF2 NExF1, NExF2 = Nota de l'examen final de les parts 1 i 2 NExP1 = Nota de l'examen parcial 1 La nota NC dependrà del grau assolit en les competències transversals pròpies de l'assignatura i es repartirà a parts iguals entre aquestes. ( hi ha dues competències C1, C2; la nota NC serà NC = 0.5*NC1 + 0.5*NC2 Per a una competència determinada hi ha la següent correspondència entre la valoració (A,B,C,D) de la competència i la nota NC1 (o NC2) que passa a formar part de la nota final. Un nivell A equival a una nota NC1 (o NC2) que estarà entre 8.5 i 10 Un nivell B equival a una nota NC1 (o NC2) que estarà entre 6,5 i < 8,5 Un nivell C equival a una nota NC1 (o NC2) que estarà entre 5 i < 6.5 Un nivell D equival a una nota NC1 (o NC2) que estarà entre 0 i <5 Les notes de les competències s'obtenen a partir d'activitats associades al Bloc 8 (Treball de Curs) i de les pràctiques de laboratori. La nota NC1, NC2 de les competències assignades a l'assignatura obeirà a la següent expressió: NCi = 0.25 * NTC + 0.10*NL + Activitats específiques de la competència; i=1,2

Plan de contingencia

Es presenta als estudiants a l'inici de curs un calendari de sessions amb indicació de continguts per a una docència síncrona de l'assignatura. Aquest calendari hauria de ser reelaborat en cas de que la contingència ho requereixi. El material de l'assignatura (sessions de teoria, problemes i pràctiques de laboratori) permet ser impartit via Google Meet i JamBoard (o equivalent). Les sessions de laboratori ja estan pensades per contenir espai per a consultes per part dels estudiants. En cas necessari poden establir-se Meets individuals per consultes o be per e-mail. Es contempla la possiblitat de adaptar els examen utilitzant la plataforma Atenea Exams amb lliurament de tasques per part dels estudiants.