Ofertas de proyectos

Usted está aquí

Consulta ofertas de otros estudios y especialidades

Lung cancer remains the leading cause of cancer-related deaths worldwide. AI has recently emerged as a transformative tool for enhancing medical decision-making. However, its widespread adoption faces several challenges, including data quality, model transparency, and interpretability. This thesis seeks to explore how innovative AI techniques can revolutionize lung cancer research and treatment, offering new opportunities to address these challenges. It aims to contribute to the broader application of AI in healthcare.

This project will address the problem of optimization of power flows in electric power systems with high penetration of renewable generation using Deep Reinforcement Learning and Graph Neural Networks.

In this thesis, the focus is on understanding emergence in Large Language Models (LLMs). Emergence refers to complex behaviors that arise from interactions among individual components, even when those components lack those behaviors individually. LLMs exhibit surprising linguistic abilities beyond their constituent words or tokens. Assembly Theory (AT) provides a framework for quantifying complexity without altering fundamental physical laws. By applying AT to LLMs, this research aims to uncover how emergent properties emerge from the interplay of simple components.

State-of-the-art models such as LLMs are too large to fit in a single compute node (GPU, NPU, CPU), both for training and inference on a device (e.g., phone, laptop, tablet) or in larger-scale data centers. There is a need to develop optimization techniques to split and place these models onto a distributed set of compute nodes so that the overall system performance is maximized. The research will be focused on optimizing the placement of AI models onto distributed systems considering training time, energy consumption, and computational resources.

We want to demonstrate experimentally that augmenting a model with fNIRS data carries neural activity features complementing the information captured by the model and demonstrate that it improves the models' performance. To this end, we will have to collect data from participants and test how different Transformer models benefit from different types of fNIRS attention masks.

We want to demonstrate experimentally that augmenting a model with eye tracking (ET) data carries linguistic features complementing the information captured by the model and demonstrate that it improves the models' performance. To this end, we will have to collect data from participants and test how different Transformer models benefit from different types of ET attention masks.

Recent advancements in nanotechnology have enabled the concept of the "Human Intranet", where devices inside and on our body can sense and communicate, opening the door to multiple exciting applications in the healthcare domain. This thesis aims to delve into the computing, communication, and localization aspects of the "Human Intranet" and how to practically realize them in the next decade.

Quantum computers promise exponential improvements over conventional ones due to the extraordinary properties of qubits. However, quantum computing faces many challenges relative to the scaling of the algorithms and of the computers that run them. This thesis delves into these challenges and proposes solutions to create scalable quantum computing systems.

This project aims to design novel ML-based advanced persistent threat (APT) detection algorithms. The student will work closely with industry experts from Telefónica on the development of tools and methods to combat APTs.

This thesis aims to explore the possibilities of the new and less studied variant of neural networks called Graph Neural Networks (GNNs). While convolutional networks are good for computer vision or recurrent networks are good for temporal analysis, GNNs are able to learn and model graph-structured relational data, with huge implications in fields such as quantum chemistry, computer networks, or social networks among others.

Consulta ofertas de otros estudios y especialidades