Modelos Gráficos Probabilísticos

Usted está aquí

Créditos
4.5
Tipos
Optativa
Requisitos
Esta asignatura no tiene requisitos, pero tiene capacidades previas
Departamento
UB;CS
Probabilistic Graphical Models are a core technology for machine learning, decision making, machine vision, natural language processing and many other artificial intelligence applications. In this course we provide an overview of the subject. We review the formal theoretical foundations and we perform a practical project where the student can apply the technology successfully to a problem of his interest.

Horas semanales

Teoría
1
Problemas
0.7
Laboratorio
0.5
Aprendizaje dirigido
0
Aprendizaje autónomo
4

Competencias

Competencias Técnicas Genéricas

Genéricas

  • CG3 - Capacidad para la modelización, cálculo, simulación, desarrollo e implantación en centros tecnológicos y de ingeniería de empresa, particularmente en tareas de investigación, desarrollo e innovación en todos los ámbitos relacionados con la Inteligencia Artificial.

Competencias Técnicas de cada especialidad

Académicas

  • CEA3 - Capacidad de comprender los principios básicos de funcionamiento de las técnicas principales de Aprendizaje Automático, y saber utilizarlas en el entorno de un sistema o servicio inteligente.
  • CEA8 - Capacidad de realizar investigación en nuevas técnicas, metodologías, arquitecturas, servicios o sistemas en el área de la Inteligencia Artificial.
  • CEA12 - Capacidad de comprender las técnicas avanzadas de Ingeniería del Conocimiento, Aprendizaje Automático y Sistemas de Soporte a la Decisión, y saber diseñar, implementar y aplicar estas técnicas en el desarrollo de aplicaciones, servicios o sistemas inteligentes.
  • CEA13 - Capacidad de comprender las técnicas avanzadas de Modelización, Razonamiento y Resolución de problemas, y saber diseñar, implementar y aplicar estas técnicas en el desarrollo de aplicaciones, servicios o sistemas inteligentes.

Profesionales

  • CEP1 - Capacidad de resolver las necesidades de analisis de la informacion de las diferentes organizaciones, identificando las fuentes de incertidumbre y variabilidad.
  • CEP2 - Capacidad de resolver los problemas de toma de decisiones de las diferentes organizaciones, integrando herramientas inteligentes.
  • CEP3 - Capacidad de aplicación de las técnicas de Inteligencia Artificial en entornos tecnológicos e industriales para la mejora de la calidad y la productividad.
  • CEP5 - Capacidad de diseñar nuevas herramientas informáticas y nuevas técnicas de Inteligencia Artificial en el ejercicio profesional.

Competencias Transversales

Uso solvente de los recursos de información

  • CT4 - Gestionar la adquisicion, la estructuracion, el analisis y la visualizacion de datos e informacion en el ambito de la especialidad y valorar de forma critica los resultados de esta gestion.

Razonamiento

  • CT6 - Capacidad de evaluar y analizar de manera razonada y critica sobre situaciones, proyectos, propuestas, informes y estudios de caracter cientifico-tecnico. Capacidad de argumentar las razones que explican o justifican tales situaciones, propuestas, etc.

Analisis y sintesis

  • CT7 - Capacidad de analisis y resolucion de problemas tecnicos complejos.

Básicas

  • CB6 - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
  • CB9 - Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Objetivos

  1. Be able to use effectively Probabilistic Graphical Models in business and research scenarios.
    Competencias relacionadas: CG3, CEA3, CEA8, CEA12, CEA13, CEP1, CEP2, CEP3, CEP5, CT4, CT6, CT7, CB6, CB9,

Actividades

Actividad Acto evaluativo


Lecture

Collaborative style lectures
Objetivos: 1
Teoría
0h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Metodología docente

Lectures will be given where the main contents will be presented to the students. The students will be requested to do exercises to increase and deepen the knowledge acquired in the lectures. Finally an exam will validate the learning outcome of the students.

Método de evaluación

The course will be marked by an examination and through the evaluation of the exercises requested to the students along the course. However, there is room for a different evaluation method to be agreed between the students and the course professor when the course begins.

Bibliografía

Básica:

Web links

Capacidades previas

The course requires the student to have some minor knowledge of linear algebra and some concepts of calculus. He should be proficient in algorithmics as well.