The issues of the course are to provide students with the basic and necessary knowledge, in order that after finishing the course, they could identify when a given domain is really a complex one, and how many and of which nature are the decisions involved in the management of the given domain. Also, a main goal is to know how to analyse, to design, to implement and to validate an Intelligent Decision Support Systems (IDSS), for this kind of domains. Particularly, the integration of Artificial Intelligence models and Statistical models, and the knowledge discovery from data step, will be emphasised.
Profesorado
Responsable
Karina Gibert Oliveras (
)
Otros
Xavier Angerri Torredeflot (
)
Horas semanales
Teoría
2
Problemas
0
Laboratorio
1
Aprendizaje dirigido
0.115
Aprendizaje autónomo
5.53
Competencias
Competencias Técnicas Genéricas
Genéricas
CG3 - Capacidad para la modelización, cálculo, simulación, desarrollo e implantación en centros tecnológicos y de ingeniería de empresa, particularmente en tareas de investigación, desarrollo e innovación en todos los ámbitos relacionados con la Inteligencia Artificial.
Competencias Técnicas de cada especialidad
Académicas
CEA12 - Capacidad de comprender las técnicas avanzadas de Ingeniería del Conocimiento, Aprendizaje Automático y Sistemas de Soporte a la Decisión, y saber diseñar, implementar y aplicar estas técnicas en el desarrollo de aplicaciones, servicios o sistemas inteligentes.
Profesionales
CEP3 - Capacidad de aplicación de las técnicas de Inteligencia Artificial en entornos tecnológicos e industriales para la mejora de la calidad y la productividad.
CEP8 - Capacidad de respetar el entorno ambiental y diseñar y desarrollar sistemas inteligentes sostenibles.
Competencias Transversales
Trabajo en equipo
CT3 - Ser capaz de trabajar como miembro de un equipo interdisciplinar ya sea como un miembro mas, o realizando tareas de direccion con la finalidad de contribuir a desarrollar proyectos con pragmatismo y sentido de la responsabilidad, asumiendo compromisos teniendo en cuenta los recursos disponibles.
Uso solvente de los recursos de información
CT4 - Gestionar la adquisicion, la estructuracion, el analisis y la visualizacion de datos e informacion en el ambito de la especialidad y valorar de forma critica los resultados de esta gestion.
Analisis y sintesis
CT7 - Capacidad de analisis y resolucion de problemas tecnicos complejos.
Básicas
CB6 - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
CB7 - Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios
Objetivos
To provide students with the basic and necessary knowledge, in order that they could identify when a given domain is really a complex one
Competencias relacionadas:
CB6,
CB7,
CT7,
CEA12,
To identify how many and of which nature are the decisions involved in complex domains management
Competencias relacionadas:
CT7,
CEA12,
CB7,
CB6,
To know how to analyse, to design, to implement and to validate an Intelligent Decision Support Systems (IDSS), emphasising the integration of Artificial Intelligence models and Statistical/Numerical models, and the knowledge discovery from data.
Competencias relacionadas:
CT3,
CT4,
CEP3,
CEP8,
CG3,
Contenidos
Introduction
Complexity of real-world systems or domains
The need of decision support tools
Decisions
Decision Theory
Modelling of Decision Process
Evolution of Decision Support Systems
Historical perspective of Management Information Systems
Decision Support Systems (DSS)
Advanced Decision Support Systems (ADSS)
Intelligent Decision Support Systems (IDSS)
Intelligent Decision Support Systems (IDSS)
IDSS Architecture
IDSS Analysis and Design
Requirements, advantages and drawbacks of IDSS
IDSS Validation
Implementation of an IDSS in a computer
Knowledge Discovery in a IDSS: from Data to Models
Introducction
Data Structure
Data Filtering
Knowledge Models
- Descriptive models
- Associative models
- Discriminant Models
- Predictive models
Uncertainty Models
- Probabilistic models
- Fuzzy models
Post-Processing and Model Validation
Post-processing techniques
Validation
Statistical Methods for Hypotheses Verification
Tools and Applications
Software Tools for IDSS Development
Application of IDSS to real-world problems
Future Trends in IDSS and Conclusions
Actividades
ActividadActo evaluativo
INTRODUCTION TO THE COURSE: General view, Contents, Web page, Racó, Evaluation, Practical works, etc.
Teoría
1h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h
INTRODUCTION TO THE IDSS: Complexity of Real-world Systems, Decision Theory.
The contents of the course will be exposed with the support of several case studies along the course. In the laboratory classes, the homework of the students (practical works) will be supervised by the teacher.
Método de evaluación
Evaluation of the knowledge and skills obtained by the students will be assessed through the 3 practical Works. The final grade will be the weighted mean of the grade of each practical work:
where WFst is a Working Factor evaluating the work of a particular student within his/her teamwork in PW3. It will be obtained by observing and assessing the load of work and degree of participation of each student throughout the PW3. In normal conditions, the WFst = 1
The PW1 will be evaluated by means of its quality and its justified explanation in the document. The PW2 will be evaluated according to its accuracy and completeness. The PW3 will be evaluated through the following formula:
Where:
- MetGr: Grade for the quality of the methodology and work done, DocGr: Grade for the documentation delivered, OrEGr: Grade for the quality of the oral exposition (both presentation and content assessed, as well as the ability to answer questions), TManGr: Grade for the planning, coordination and management of the team, IGr: The individual evaluation of each student including her/his integration level within the team group.
This individual student grade (IGr) will be a mean between the teacher assessment of the student (TeachA) and the self-assessment of the student participation by the other members of the team (SelfA). Thus,
IGr = 0.5*TeachA+ 0.5*SelfA
Bibliografía
Básica:
Intelligent Decision Support Systems -
Sànchez-Marrè, Miquel,
Springer, 2022. ISBN: 9783030877903