This exciting course broaches the hot topic of Intelligent Data Analysis (IDA) from the viewpoint of Data Mining.
Most areas in science, engineering and business are becoming increasingly data dependent. Clear examples of this are, to name a few, bioinformatics, medicine, or electronic commerce.
Data analysis techniques are needed to deal with these data and generate usable knowledge out of them. Amongst them, IDA techniques are one of the most promising approaches. This theme is at the core of the contents of this course.
Profesorado
Responsable
Alfredo Vellido Alcacena (
)
Otros
Carlos Cano Domingo (
)
Caroline König (
)
Horas semanales
Teoría
2.9
Problemas
0
Laboratorio
0
Aprendizaje dirigido
0.1
Aprendizaje autónomo
4.6
Competencias
Competencias Técnicas Genéricas
Genéricas
CG3 - Capacidad para la modelización, cálculo, simulación, desarrollo e implantación en centros tecnológicos y de ingeniería de empresa, particularmente en tareas de investigación, desarrollo e innovación en todos los ámbitos relacionados con la Inteligencia Artificial.
Competencias Técnicas de cada especialidad
Académicas
CEA4 - Capacidad de comprender los principios básicos de funcionamiento de las técnicas principales de Inteligencia Computacional, y saber utilizarlas en el entorno de un sistema o servicio inteligente.
CEA7 - Capacidad de comprender la problemática, y las soluciones a los problemas en la práctica profesional de la aplicación de la Inteligencia Artificial en el entorno empresarial e industrial.
CEA11 - Capacidad de comprender las técnicas avanzadas de Inteligencia Computacional, y saber diseñar, implementar y aplicar estas técnicas en el desarrollo de aplicaciones, servicios o sistemas inteligentes.
Profesionales
CEP1 - Capacidad de resolver las necesidades de analisis de la informacion de las diferentes organizaciones, identificando las fuentes de incertidumbre y variabilidad.
CEP5 - Capacidad de diseñar nuevas herramientas informáticas y nuevas técnicas de Inteligencia Artificial en el ejercicio profesional.
Competencias Transversales
Uso solvente de los recursos de información
CT4 - Gestionar la adquisicion, la estructuracion, el analisis y la visualizacion de datos e informacion en el ambito de la especialidad y valorar de forma critica los resultados de esta gestion.
Razonamiento
CT6 - Capacidad de evaluar y analizar de manera razonada y critica sobre situaciones, proyectos, propuestas, informes y estudios de caracter cientifico-tecnico. Capacidad de argumentar las razones que explican o justifican tales situaciones, propuestas, etc.
Analisis y sintesis
CT7 - Capacidad de analisis y resolucion de problemas tecnicos complejos.
Objetivos
Presenting DM as a process that should involve a methodology id applied at its best.
Competencias relacionadas:
CEA7,
CEP5,
CT4,
CT6,
Introducing the students to the new concept of DM for processes, called Process Mining.
Competencias relacionadas:
CEA7,
CG3,
CEP1,
CEP5,
CT4,
CT6,
Delving into some detail in one of the stages of DM: data exploration
Competencias relacionadas:
CEA4,
CG3,
CEP1,
CT4,
Dealing in detail with the problem of data visualization for exploration as a key issue in DM.
Competencias relacionadas:
CEA11,
CG3,
CEP1,
CEP5,
CT4,
CT6,
Introducing the students to the basics of probability theory as applied in Intelligent Data Analysis (IDA)
Competencias relacionadas:
CEP1,
CT4,
CT6,
CT7,
Introducing the students to the probabilistic variant of IDA in the form of Statistical Machine Learning, both for supervised and unsupervised learning models.
Competencias relacionadas:
CEA11,
CG3,
CT4,
CT6,
CT7,
Dealing in detail with different unsupervised models for data visualization, including case studies.
Competencias relacionadas:
CEA11,
CG3,
CEP1,
CEP5,
CT4,
CT6,
CT7,
Approaching the multi-faceted concept of data mining (DM) from different perspectives.dies.
Competencias relacionadas:
CEA7,
CG3,
CEP5,
CT4,
CT6,
CT7,
Contenidos
Introduction to the concept of data mining (DM).
DM is a multi-faceted concept that requires discussion and clarification. We will do this at the beginning of the course.
DM as a methodology.
We argue that DM should not be focused on the concept of data analysis/modeling, but, instead, should be treated as a methodology with diverse inter-related stages.
DM for processes: Process Mining.
A new development in DM methodologies is that which deals with one specifically suited for processes. It is called Process Mining and will be described and discussed in this course.
Data exploration in DM.
One of the main stages of well-structures DM methodologies is Data exploration. It will be discussed as a preamble to data visualization.
Basics of probability theory in Intelligent Data Analysis (IDA)
For a long time in the last half-century, multivariate statistics and artificial intelligence (mostly in the field of machine learning) have developed in parallel without fully meeting. Statistical machine learning has bridged that field over the last two decades. We introduce it by first providing some basic principles of probability theory (Bayesian inference).
Data visualization for exploration.
One of the aspects of the problem of data exploration is data visualization. It has a research 'life' of its own as it involves not only computer-based mathematical models, but also natural perception and processing.
Statistical Machine Learning for IDA: supervised models.
Once the basics of Bayesian inference are set, we will delve into the field of Statistical Machine Learning for IDA, starting with supervised learning models, with an emphasis on feed-forward artificial neural networks.
Statistical Machine Learning for IDA: unsupervised models.
Once the basics of Bayesian inference and of Statistical Machine Learning for IDA in supervised models are set, we will continue with unsupervised models, focusing on self-organizing maps and related models.
Unsupervised models for data visualization, with case studies.
In the final item of the contents of the course, we will bring statistical machine learning and data visualization together by discussing some probabilistic unsupervised learning models for data visualization, including some case studies as an example.
Actividades
ActividadActo evaluativo
Essay on IDA for DM
Students will have to write a research essay on the topic of IDA for DM, with different options:
1. State of the art on an specific IDA-DM topic
2. Evaluation of an IDA-DM software tool with original experiments
3. Pure research essay, with original experimental content Objetivos:81234567 Semana:
15
Teoría
0h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
3h
Aprendizaje autónomo
0h
Introduction to Data Mining and its Methodologies
Introduction to Data Mining as a general concept and to its methodologies for practical implementation
Teoría: presential seminars dealing with the theory of this topic
Aprendizaje dirigido: Students' directed learning, related to the topic.
Aprendizaje autónomo: Students' autonomous learning, related to the topic.
The meeting of statistics and machine learning: Statistical Machine Learning methods, from the point of view of both supervised and supervised learning
Teoría: presential seminars dealing with the theory of this topic
Aprendizaje dirigido: Students' directed learning, related to the topic.
Aprendizaje autónomo: Students' autonomous learning, related to the topic.
Teoría
12h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
16h
SML in data visualization, with case studies
We merge the topics of SML and data visualization, illustrating its use with some real case studies
Teoría: presential seminars dealing with the theory of this topic
Aprendizaje dirigido: Students' directed learning, related to the topic.
Aprendizaje autónomo: Students' autonomous learning, related to the topic.
This course will build on different teaching methodology (TM) aspects, including:
TM1: Expositive seminars
TM2: Expositive-participative seminars
TM3: Orientation for individual assignments (essays)
TM4: Individual tutorization
Método de evaluación
The course will be evaluated through a final essay that will take one of these three modalities:
1. State of the art on an specific IDA-DM topic
2. Evaluation of an IDA-DM software tool with original experiments
3. Pure research essay, with original experimental content
Students are expected to have at least some basic background in the area of artificial intelligence and, more specifically, with the areas of Machine Leaning and Computational Intelligence.
Some basic knowledge of probability theory and statistics would be beneficial.
Other than this, the course is open to students and researchers of all types of background