Este curso introducirá a diferentes técnicas avanzadas dentro de las áreas de aprendizaje automático, mineria de datos y razonamiento basado en casos. La parte de aprendizaje automático estará orientada a algoritmos no supervisados para datos estructurados (secuencias, flujos, grafos) y no estructurados. La parte de razonamiento basado en casos estará orientada al diseño e implementación de estos sistemas.
Horas semanales
Teoría
3
Problemas
0
Laboratorio
0
Aprendizaje dirigido
0.21
Aprendizaje autónomo
5.7
Competencias
Competencias Técnicas Genéricas
Genéricas
CG1 - Capacidad para proyectar, diseñar e implantar productos, procesos, servicios e instalaciones en todos los ámbitos de la Inteligencia Artificial.
CG3 - Capacidad para la modelización, cálculo, simulación, desarrollo e implantación en centros tecnológicos y de ingeniería de empresa, particularmente en tareas de investigación, desarrollo e innovación en todos los ámbitos relacionados con la Inteligencia Artificial.
Competencias Técnicas de cada especialidad
Académicas
CEA12 - Capacidad de comprender las técnicas avanzadas de Ingeniería del Conocimiento, Aprendizaje Automático y Sistemas de Soporte a la Decisión, y saber diseñar, implementar y aplicar estas técnicas en el desarrollo de aplicaciones, servicios o sistemas inteligentes.
CEA13 - Capacidad de comprender las técnicas avanzadas de Modelización, Razonamiento y Resolución de problemas, y saber diseñar, implementar y aplicar estas técnicas en el desarrollo de aplicaciones, servicios o sistemas inteligentes.
Profesionales
CEP1 - Capacidad de resolver las necesidades de analisis de la informacion de las diferentes organizaciones, identificando las fuentes de incertidumbre y variabilidad.
Competencias Transversales
Sostenibilidad y compromiso social
CT2 - Conocer y comprender la complejidad de los fenomenos economicos y sociales tipicos de la sociedad del bienestar; capacidad para relacionar el bienestar con la globalizacion y la sostenibilidad; habilidad para utilizar de forma equilibrada y compatible la tecnica, la tecnologia, la economia y la sostenibilidad.
Uso solvente de los recursos de información
CT4 - Gestionar la adquisicion, la estructuracion, el analisis y la visualizacion de datos e informacion en el ambito de la especialidad y valorar de forma critica los resultados de esta gestion.
Básicas
CB7 - Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios
Objetivos
Conocer y utilizar tecnicas avanzadas de aprendizaje no supervisado y mineria de datos no supervisada para aplicaciones en todos los dominios de la ingenieria y la ciencia
Competencias relacionadas:
CEA12,
CEA13,
CG1,
CG3,
CEP1,
CT2,
CT4,
CB7,
Contenidos
Data Mining, a global perspective
Brief introduction to what is Data Mining and Knowledge Discovery, the areas they are related to and the different techniques involved
Unsupervised data preprocessing/transformation
This topic will include different algorithms for unsupervised data preprocessing such as data normalization, discretization, dimensionality reduction and feature extraction (PCA, ICA, SVD, linear and non linear, multidimensional scalling and non negative matrix factorization)
Unsupervised Machine Learning/Numerical Taxonomy
This topic will include classical and current algorithms for unsupervised learning from machine learning and statistics including hierarchical and parititional algorithms (K-means,Fuzzy C-means, Gaussian EM, graph partitioning, density based algorithms, grid based algorithms, unsupervised ANN, affinity propagation, ...)
Semi supervised clustering
This topic will include current semi supervised algorithms for clustering data (based on constraints, based on rules, markov random fields)
Unsupervised methodologies in Knowledge Discovery and Data Mining
This topic will include current trends on knowledge discovery for data mining and big data, (scalability, any time clustering, one pass algorithms, approximation algorithms, distributed clustering, ..)
Association Rules
This topic will include and introduction to association rules algorithms and their relationship with unsupervised learning algorithms and clustering
Mining sequential and structured data
This topic will include algorithms for unsupervised learning with sequential data and structured data, such as mining frequent sequences, strings, time series clustering and frequent motifs, clustering data streams, clustering graphs and social networks and discovering frequent subgraphs
Fundamentals of Case-Based Reasoning
Cognitive theories. Basic cycle of CBR reasoning. Academic Demosntrators.
CBR System Components
Case Structure. Case Library Structure. Retrieval. Adaptation/Reuse. Evaluation/Repair. Learning/Retain
CBR Application
A complex real-world example. OPENCASE/GESCONDA-CBR: a domain-independent CBR System .
CBR Development Problems
Competence. Space Efficiency. Time Efficiency.
Reflective/Introspective Reasoning in CBR
Introspection reasoning. Case Base maintenance.