Procesado en Geometría

Créditos
6
Tipos
Complementaria de especialidad (Gráficos y Realidad Virtual)
Requisitos
Esta asignatura no tiene requisitos, pero tiene capacidades previas
Departamento
CS
This course explores some of the most important algorithms for processing polygonal meshes (mainly triangular meshes). The main topics covered will include the construction of meshes from real objects, the filtering of geometric and topological noise, the parametrization of meshes, their deformation and edition, and their compression.

Profesores

Responsable

  • Antonio Chica Calaf ( )

Otros

  • Alvaro Vinacua Pla ( )
  • Carlos Andujar Gran ( )

Horas semanales

Teoría
2.5
Problemas
0.5
Laboratorio
1
Aprendizaje dirigido
0.2
Aprendizaje autónomo
8.3

Competencias

Competencias Técnicas de cada especialidad

Computer graphics and virtual reality

  • CEE1.1 - Capacidad de comprender y saber aplicar las tecnologías actuales y las que en el futuro se utilicen para el diseño y evaluación de aplicaciones gráficas interactivas en tres dimensiones, tanto cuando prime la calidad de imagen como cuando lo haga la interactividad o la velocidad, así como comprender los compromisos inherentes y las razones que los ocasionan.
  • CEE1.2 - Capacidad de comprender y saber aplicar las tecnologías actuales y las que en el futuro se utilicen para la evaluación, implementación y explotación de entornos de realidad virtual y/o aumentada, y de interfaces de usuario 3D basadas en dispositivos de interacción natural.

Competencias Técnicas Genéricas

Genéricas

  • CG3 - Capacidad para el modelado matemático, cálculo y diseño experimental en centros tecnológicos y de ingeniería de empresa, particularmente en tareas de investigación e innovación en todos los ámbitos de la Informática.

Competencias Transversales

Razonamiento

  • CTR6 - Capacidad de razonamiento crítico, lógico y matemático. Capacidad para resolver problemas dentro de su área de estudio. Capacidad de abstracción: capacidad de crear y utilizar modelos que reflejen situaciones reales. Capacidad de diseñar y realizar experimentos sencillos, y analizar e interpretar sus resultados. Capacidad de análisis, síntesis y evaluación.

Básicas

  • CB6 - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.

Objetivos

  1. Upon completing this course, the student will understand the main processes and algorithms behind current-day geometry processing. More specifically they will be
    Competencias relacionadas:
    Subcompetences:
    • able to implement and/or use the main mechanisms to deform and edit complex meshes
    • able to evaluate, understand, implement and use methods to compress geometric meshes
    • able to understand the main tools to filter geometric and topological noise in meshes

Contenidos

  1. Mathematical Preliminaries
    Review concepts the students should already know, establish notation, and introduce some new material that will be needed for the course, including elementary continuous and discrete differential geometry of curves and surfaces.
  2. Acquisition of Models; reconstruction, registration, zipping.
    Discussion of the techniques whereby we can capture complex geometric meshes from physical objects.
  3. Mesh repair
    Difficulties found in acquired models, and need for fix-ups. Some techniques to automatically reduce mesh artifacts.
  4. Smoothing
    Presentation of techniques used to filter noise and improve the quality of meshes. Geometric and topological noise. Feature preservation.
  5. Synthetic meshes
    Presentation of some of the methods available to generate complex smooth shapes synthetically.
  6. Parameterization of meshes. Remeshing and simplifying meshes.
    Importance of parameterizations. Methods to achieve smooth parameterizations. Parameterizations and remeshing.
  7. Mesh deformations and animation.
    Skeleton and cage-based methods for deforming meshes.

Actividades

Actividad Acto evaluativo


Implementation of selected algorithms.

A selection of relevant algorithms will be assigned to implement in Lab sessions and on your own. You may be required to present your solution to the class. You must turn in fully functional source code that runs in Linux or MacOSX.

Teoría
0h
Problemas
0h
Laboratorio
12h
Aprendizaje dirigido
0h
Aprendizaje autónomo
36h

Lectures

Material will be presented in lectures along the term. You are expected to conduct complementary readings and exercises will also be assigned on occasion, to be presented at a later date or turned in.
Objetivos: 1
Teoría
30h
Problemas
3h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
43.6h

Final exam

At the end of the term you will have a final exam, which may be a take-home.

Semana: 18
Tipo: examen final
Teoría
2h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Problems to solve independently

You must develop solutions to problems that will be assigned in class; these will either be presented and discussed at a later date or turned in for grading.

Teoría
0h
Problemas
3h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
20h

Metodología docente

The course will consist in lectures on the theoretical foundations of GP, which will include discussions of problems and applications. There will also be lab sessions where the students will tackle specific problems assigned to them, and will hand in working programs addressing these problems.

Método de evaluación

The students will be marked for their attendance and participation in class (including the presentation of exercise solutions, their discussion, and exercises turned in for grading), yielding a mark "Class".

Another grade will stem from the student's implementations of selected algorithms (including occasionally their presentation of their solution in a laboratory class), yielding a mark "Lab".

Finally, students will receive a third mark based on their performance in the final exam, yielding "Exam".

The final grade for the course will be computed as

Final Grade = 0.3 Class + 0.3 Lab + 0.4 Exam.

Bibliografía

Básica:

Complementaria:

Capacidades previas

Background material will be introduced or reviewed as necessary along the course, but a general knowledge of linear algebra, rudiments of differential geometry, and optimization, are desirable. Specifically, notions of vector spaces, transformations, changes of bases, eigenvalues and eigenvectors, SVD, and elements of differential geometry of curves and surfaces are desirable to maximize the benefit of taking this course.
Completing, for instance, GTCG should provide enough background.

Adenda

Contenidos

No changes with respect to the information included in the course guide.

Metodología docente

No changes with respect to the information included in the course guide.

Método de evaluación

No changes with respect to the information included in the course guide.

Plan de contingencia

The course will be taught completely online: * The theory sessions will be given with a combination of videos, notes, and streaming classes. * The labs will be conducted as usual, but via streaming.