El objetivo de la asignatura es dar a conocer los principios básicos de la visualización de datos, tanto desde un punto de vista más teórico como desde un punto de vista práctico. Al finalizar la asignatura, el estudiante debería ser capaz de realizar una limpieza de datos, un diseño visual y una implementación utilizando las técnicas más conocidas de visualización de datos.  
  
    Profesorado
          Responsable
      
                  - 
            Pere Pau Vázquez Alcocer ( 
 
    )
          
Horas semanales
    
      
        
        
        
        
          
            Aprendizaje dirigido
          
          
            0.15          
         
        
       
     
  
  
    Objetivos
    
              - 
          Introducción a la Visualización          
 Competencias relacionadas:
                      CDG3,
                      CTE12,
                      CB7,
                      CB9,
 Subcompetences:
                              - Definición
- Historia de la visualización
- Historia de la visualización
- Definición
- Conceptos básicos
- Conceptos básicos
 
- 
          Percepción          
 Competencias relacionadas:
                      CTE9,
                      CTE11,
                      CTE12,
                      CTR4,
                      CTR6,
                      CB7,
                      CB8,
                      CG9,
 Subcompetences:
                              - El sistema visual
- Variables preatentivas
- Ránquing de canales visuales
- El sistema visual
- Variables preatentivas
- Ránquing de canales visuales
 
- 
          Técnicas básicas y avanzadas de visualización de datos          
 Competencias relacionadas:
                      CTE11,
                      CTE12,
                      CTR4,
                      CTR6,
                      CB7,
                      CB8,
                      CB9,
                      CG9,
 Subcompetences:
                              - Diagramas de barras, diagramas de líneas, diagramas de pastel
- Visualización de múltiples variables
- Esquemas específicos (datos espaciales, datos temporales...)
- Diagramas de barras, diagramas de líneas, diagramas de pastel
- Visualización de múltiples variables
- Esquemas específicos (datos espaciales, datos temporales...)
 
- 
          Mútliples vistas, interacción y reducción de datos          
 Competencias relacionadas:
                      CDG3,
                      CTE9,
                      CTE11,
                      CTE12,
                      CTR4,
                      CTR6,
                      CB7,
                      CB8,
                      CB9,
                      CG9,
 Subcompetences:
                              - Motivación
- Organización de múltiples vistas
- El mantra de la visualización
- Motivación
- Organización de múltiples vistas
- El mantra de la visualización
 
- 
          Implementación de sistemas de visualización de datos          
 Competencias relacionadas:
                      CDG3,
                      CTE9,
                      CTE11,
                      CTE12,
                      CTR4,
                      CTR6,
                      CB7,
                      CB8,
                      CB9,
                      CG9,
 Subcompetences:
                              - Implementación de Sistemas de Visualización
- Limpieza de datos
- Diseño de sistemas de visualización
- Limpieza de datos
- Diseño de sistemas de visualización
- Implementación de Sistemas de Visualización
 
Contenidos
      
    
              - 
          Introducción a la visualización.          
 En este apartado se introducirán los conceptos más importantes de visualización, se describirán algunas malas prácticas. También se hablará de la historia de la visualización.
- 
          Representaciones visuales de los datos          
 En este tema se mostrarán las técnicas más básicas de visualización de datos y también se presentarán algunas técnicas más avanzadas para visualizar datos complejos, como visualización de múltiples variables o visualización geoespacial.
- 
          Percepción          
 Se explicará el funcionamiento elemental del sistema de percepción visual. También se describirán algunos conceptos importantes como las variables preatentivas, la importancia del color y los principios de percepción más importantes. También se describirá qué variables visuales se perciben con mayor cuidado que otras.
- 
          Diseño de múltiples vistas          
 Para representar información altamente compleja, es muy común necesitar múltiples variables y vistas. En este apartado se hablará de cómo diseñar sistemas complejos utilizando múltiples vistas: qué formas deben organizar las vistas, separar los datos, y cómo crear interacciones conectadas.
- 
          Implementación de aplicaciones de visualización de datos          
 Existen muchas herramientas y tecnologías desarrolladas que permiten la programación de sistemas de visualización de datos. Hay herramientas que no requieren ningún tipo de programación como Tableau, Vega, Lyra o que faciliten más control sobre el resultado utilizando lenguajes de programación y librerías como altair por Python, matplotlib por R, o D3 por JavaScript. El objetivo de este tema es que los alumnos sean capaces de evaluar las necesidades que pide un proyecto para poder escoger la herramienta correcta. Además, también será fundamental que los alumnos aprendan a realizar aplicaciones interactivas de visualización de datos utilizando una librería moderna, como altair o Vega.
Actividades
    
      Actividad
      Acto evaluativo
    
    
    
                      
          
            
              Introducción a la visualización y los sistemas de visualización de datos
              Desarrollo del tema: Introducción a la visualización              
                              
                                      - Teoría: Definición de visualización. Importancia e impacto. Introducción a los sistemas de visualización.
- Problemas: Ejemplos de buenas y malas prácticas.
Objetivos:
                                  1
                                            
                              Contenidos: 
            
           
         
        
                      
          
            
              Percepción
              Desarrollo del tema: percepción y color. 
Ranking de variables visuales. 
Conceptos de percepción: variables preatentivas. 
Principios de percepción. 
Marcas y canales. 
Uso del color y paletas de colores.              
                              
                                      - Teoría: Percepción y color. Ranking de variables visuales. Conceptos de percepción: Variables preatentivas. Principios de percepción. Marcas y canales. Uso del color y paletas de colores.
- Problemas: Percepción y color. Ranking de variables visuales. Conceptos de percepción: Variables preatentivas. Principios de percepción. Marcas y canales. Uso del color y paletas de colores.
Objetivos:
                                  2
                                  1
                                            
                              Contenidos: 
            
           
         
        
                      
          
            
              Representaciones visuales de datos
              Desarrollo del tema: Representaciones visuales de datos. Técnicas básicas de visualización. Técnicas avanzadas de visualización.              
                              
                                      - Laboratorio: Diseño de visualizaciones efectivas. Limpieza de datos. Implementación de visualizaciones básicas de datos.
- Aprendizaje dirigido: Ejercicios prácticos de visualización de conjuntos sencillos de datos.
- Aprendizaje autónomo: Ejercicios de limpieza de datos. Ejercicios prácticos de visualización de conjuntos sencillos de datos.
Objetivos:
                                  3
                                  4
                                            
                              Contenidos: 
            
           
         
        
                      
          
            
              Diseño de múltiples vistas
              Desarrollo del tema: Diseño de múltiples vistas. Organización de múltiples vistas. Vistas coordinadas. Interacción. Análisis exploratorio de datos.              
                              
                                      - Teoría: Diseño de múltiples vistas. Organización de múltiples vistas. Vistas coordinadas. Interacción. Análisis exploratorio de datos.
- Problemas: Diseño de múltiples vistas. Organización de múltiples vistas. Vistas coordinadas. Interacción. Análisis exploratorio de datos.
- Laboratorio: Implementación de sistemas de múltiples vistas coordinadas. Implementación de interacción cruzada.
- Aprendizaje dirigido: Implementación de sistemas de múltiples vistas coordinadas. Implementación de interacción cruzada.
- Aprendizaje autónomo: Implementación de sistemas de múltiples vistas coordinadas. Implementación de interacción cruzada.
 
            
           
         
        
                      
          
            
              Implementación de aplicaciones de visualización de datos.
              Aprendizaje de una herramienta o librería de visualización de datos. Proyecto de visualización de datos.              
                              
                                      - Laboratorio: Aprendizaje de una herramienta o librería de visualización de datos. Proyecto de visualización de datos.
- Aprendizaje dirigido: Aprendizaje de una herramienta o librería de visualización de datos. Desarrollo de un proyecto de visualización de datos.
- Aprendizaje autónomo: Aprendizaje de una herramienta o librería de visualización de datos. Desarrollo de un proyecto de visualización de datos.
Objetivos:
                                  2
                                  1
                                  3
                                  4
                                  5
                                            
                              Contenidos: 
            
           
         
        
                      
          
            
              Entrega Lab1
              Entrega de la primera parte del proyecto: Visualización estática              
              
                              
Objetivos:
                                  2
                                  1
                                  3
                                  4
                                  5
                                            
                                                              Semana: 
                  4                                    
                                            
            
 
            
           
         
        
                      
          
            
              Entrega Lab2
              Entrega de la segunda parte del proyecto: Lab2              
              
                              
Objetivos:
                                  2
                                  3
                                  4
                                  5
                                            
                                                              Semana: 
                  7                                    
                                            
            
 
            
           
         
        
                      
          
            
              Examen final
              Se realizará una prueba final para demostrar los conocimientos adquiridos en la asignatura.              
              
                              
Objetivos:
                                  2
                                  1
                                  3
                                  4
                                  5
                                            
                                                              Semana: 
                  8                                    
                                            
            
 
            
           
         
        
           
  
  
    Metodología docente
     
    La asignatura se impartirá de forma muy práctica. Cada día se comentarán algunos conceptos teóricos y el resto de la sesión se dedicará a trabajar los conceptos en el laboratorio. Se empezará por la resolución de ejercicios sencillos de visualización y enseguida se pasará a desarrollar un proyecto en dos etapas. En una primera etapa, se realizará una visualización de múltiples vistas estática y en una segunda, se añadirá interacción.  
  
    Método de evaluación
      La asignatura se evaluará con un proyecto que tendrá dos entregas y un examen final. La primera entrega será una visualización estática (Lab1) y la segunda será una visualización interactiva (Lab2). La nota final será: NF = Lab1 * 0.3 + Lab2 * 0.4 + 0.3 * Examen Final  
  
    Bibliografía
          Básica:
      
                  - 
            Visualization analysis and design -
            Munzner, Tamara; Maguire, Eamonn,
            CRC Press, Taylor & Francis Group,            2015.            ISBN: 9781466508910            
 https://discovery.upc.edu/discovery/fulldisplay?docid=alma991004067699706711&context=L&vid=34CSUC_UPC:VU1&lang=ca
- 
            Show me the numbers :  designing tables and graphs to enlighten -
            Few, Stephen,
            Analytics Press,            2012.            ISBN: 9780970601971            
 https://discovery.upc.edu/discovery/fulldisplay?docid=alma991004067739706711&context=L&vid=34CSUC_UPC:VU1&lang=ca
- 
            Analítica visual :  cómo explorar, analizar y comunicar datos -
            Pascual Cid, Víctor; Rovira Samblancat, Pere,
            Ediciones Anaya Multimedia,            [2020].            ISBN: 9788441541986            
 https://discovery.upc.edu/discovery/fulldisplay?docid=alma991004213959706711&context=L&vid=34CSUC_UPC:VU1&lang=ca
- 
            Data visualisation :  a handbook for data driven design -
            Kirk, Andy,
            Sage Publications Ltd,            2019.            ISBN: 9781526468925            
 https://discovery.upc.edu/discovery/fulldisplay?docid=alma991004173629706711&context=L&vid=34CSUC_UPC:VU1&lang=ca
- 
            Better data visualizations :  a guide for scholars, researchers, and wonks -
            Schwabish, Jonathan A,
            Columbia University Press,            [2021].            ISBN: 9780231550154            
 https://discovery.upc.edu/discovery/fulldisplay?docid=alma991001811849706711&context=L&vid=34CSUC_UPC:VU1&lang=ca
Capacidades previas
    Los estudiantes deberían tener conocimientos básicos de estadística y eventualmente de gráficos por computador. También deben saber programar en algún lenguaje de programación general, preferentemente Python.