Aprendizaje Automático

Usted está aquí

Créditos
6
Tipos
Obligatoria
Requisitos
Esta asignatura no tiene requisitos, pero tiene capacidades previas
Departamento
CS
The aim of machine learning is the development of theories, techniques and algorithms to allow a computer system to modify its behavior in a given environment through inductive inference. The goal is to infer practical solutions to difficult problems --for which a direct approach is not feasible-- based on observed data about a phenomenon or process. Machine learning is a meeting point of different disciplines: statistics, optimization and algorithmics, among others.

The course is divided into conceptual parts, corresponding to several kinds of fundamental tasks: supervised learning (classification and regression) and unsupervised learning (clustering, density estimation). Specific modelling techniques studied include artificial neural networks and support vector machines. An additional goal is getting acquainted with python and its powerful machine learning libraries.

Profesores

Responsable

  • Marta Arias Vicente ( )

Otros

  • Raquel Leandra Pérez Arnal ( )

Horas semanales

Teoría
1.9
Problemas
0
Laboratorio
1.9
Aprendizaje dirigido
0
Aprendizaje autónomo
6.86

Competencias

Competencias Transversales

Uso solvente de los recursos de información

  • CT4 - Gestionar la adquisicion, la estructuracion, el analisis y la visualizacion de datos e informacion en el ambito de la especialidad y valorar de forma critica los resultados de esta gestion.

Lengua extranjera

  • CT5 - Conocer una tercera lengua, preferentemente el inglés, con un nivel adecuado oral y escrito y en consonancia con las necesidades que tendrán los titulados y tituladas.

Espíritu emprendedor e innovador

  • CT1 - Conocer y entender la organización de una empresa y las ciencias que rigen su actividad; tener capacidad para entender las normas laborales y las relaciones entre la planificación, las estrategias industriales y comerciales, la calidad y el beneficio. Conocer y entender los mecanismos en que se basa la investigación científica, así como los mecanismos e instrumentos de transferencia de resultados entre los diferentes agentes socioeconómicos implicados en los procesos de I+D+i.

Básicas

  • CB6 - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
  • CB7 - Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
  • CB8 - Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades.
  • CB9 - Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
  • CB10 - Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

Competencias Técnicas Genéricas

Genéricas

  • CG2 - Identificar y aplicar métodos de análisis, extracción de conocimiento y visualización de datos recogidos en formatos muy diversos.

Competencias Técnicas

Específicas

  • CE6 - Diseñar el proceso de Ciencia de Datos y aplicar metodologías científicas para obtener conclusiones sobre poblaciones y tomar decisiones en consecuencia, a partir de datos estructurados o no estructurados y potencialmente almacenados en formatos heterogéneos.
  • CE7 - Identificar las limitaciones impuestas por la calidad de datos en un problema de ciencia de datos y aplicar técnicas para disminuir su impacto
  • CE10 - Identificar los métodos de aprendizaje automático y modelización estadística a utilizar para resolver un problema específico de ciencia de datos y aplicarlos de forma rigurosa
  • CE12 - Aplicar la ciencia de datos en proyectos multidisciplinares para resolver problemas en dominios nuevos o poco conocidos y que sean económicamente viables, socialmente aceptables, y de acuerdo con la legalidad vigente
  • CE13 - Identificar las principales amenazas en el ámbito de la ética y la privacidad de datos en un proyecto de ciencia de datos (tanto en el aspecto de gestión como de análisis de datos) y desarrollar e implantar medidas adecuadas para mitigar dichas amenazas.

Objetivos

  1. Formulate the problem of (machine) learning from data, and know the different machine learning tasks, goals and tools.
    Competencias relacionadas: CB6, CB7, CB8, CB10,
  2. Ability to decide, defend and criticize a solution to a machine learning problem, arguing the strengths and weaknesses of the approach. Additionally, ability to compare, judge and interpret a set of results after making a hypothesis about a machine learning problem
    Competencias relacionadas: CT4, CT5, CT1, CG2, CE6, CE7, CE10, CE12, CE13, CB6, CB7, CB8, CB9, CB10,
  3. To be able to solve concrete machine learning problems with available open-source software
    Competencias relacionadas: CT4, CT5, CG2, CE6, CE7, CE10, CE12, CE13, CB6, CB9,

Contenidos

  1. Introduction to Machine Learning
    General information and basic concepts. Overview to the problems tackled by machine learning techniques. Supervised learning (classification and regression), unsupervised learning (clustering and density estimation) and semi-supervised learning (reinforcement and transductive). Examples.
  2. Supervised machine learning theory
    The supervised Machine Learning problem setup. Classification and regression problems. Bias-variance tradeoff. Regularization. Overfitting and underfitting. Model selection and resampling methods.
  3. Linear methods for regression
    Error functions for regression. Least squares: analytical and iterative methods. Regularized least squares. The Delta rule. Examples.
  4. Linear methods for classification
    Error functions for classification. The perceptron algorithm. Novikoff's theorem. Separations with maximum margin. Generative learning algorithms and Gaussian discriminant analysis. Naive Bayes. Logistic regression. Multinomial regression.
  5. Artificial neural networks
    Artificial neural networks: multilayer perceptron and a peak into deep learning. Application to classification and to regression problems.
  6. Kernel functions and support vector machines
    Definition and properties of Kernel functions. Support vector machines for classification and regression problems.
  7. Unsupervised machine learning
    Unsupervised machine learning techniques. Clustering algorithms: EM algorithm and k-means algorithm.
  8. Ensemble methods
    Bagging and boosting methods, with an emphasis on Random Forests

Actividades

Actividad Acto evaluativo



Teoría
0h
Problemas
0h
Laboratorio
27h
Aprendizaje dirigido
0h
Aprendizaje autónomo
27h

Mid-term exam (test)

Mid-term exam (test)
Objetivos: 1 2
Semana: 7
Tipo: examen de teoría
Teoría
1h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
8h

Final exam

Final exam
Objetivos: 1 2
Semana: 17
Tipo: examen final
Teoría
2h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
16h

Course project

Course project
Objetivos: 1 2 3
Semana: 18
Tipo: entrega
Teoría
0h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
25h

Metodología docente

The course introduces the most important concepts in machine learning and its most relevant techniques with a solid foundation in math. All the theory and concepts are illustrated and accompanied by real-world examples and code using open source libraries.

The theory is introduced in lectures where the teacher exposes the concepts, and during the lab sessions students will see many examples on how to apply the methods and theory learned, as well as code their own solutions to exercises proposed by the teacher.

Students have to work on a course project using a real-world dataset.

Método de evaluación

The course is graded as follows:

P = Grade of mid-term test-type exam
F = Score of the final exam
L = Score for the practical work

final grade = 20% P + 40% F + 40% L

Bibliografía

Básica:

Complementaria:

Web links

Capacidades previas

Elementary notions of probability and statistics.
Elementary linear algebra and real analysis
Good programming skills in a high-level language

Adenda

Contenidos

NO HI HA CANVIS RESPECTE LA INFORMACIÓ PUBLICADA A LA GUIA DOCENT. NO CHANGE WRT PREVIOUSLY PUBLISHED INFORMATION.

Metodología docente

Les classes de teoria es faran no presencialment mitjançant la publicació de vídeos i sessions de vidoconferència gravades. Theory lectures will be carried out through recorded material, written notes, and real-time meet sessions.

Método de evaluación

NO HI HA CANVIS RESPECTE LA INFORMACIÓ PUBLICADA A LA GUIA DOCENT. NO CHANGE WRT PREVIOUSLY PUBLISHED INFORMATION.

Plan de contingencia

Passaríem a fer les sessions de laboratori de forma remota, amb sessions de videoconferència per aclarir dubtes. If on lockdown, we would carry out remotely via live meets and recorded sessions.