Bioquímica

Usted está aquí

Créditos
6
Tipos
Obligatoria
Requisitos
Esta asignatura no tiene requisitos
Departamento
UPF;UB
Mail
Este curso abarca conceptos y temas fundamentales en Bioquímica, desde las moléculas básicas de la vida hasta el metabolismo y los métodos de biología molecular. El curso cubre desde la estructura y función de las proteínas y componentes celulares hasta el metabolismo celular.

Profesorado

Responsable

  • Silvia Busquets Rius ( )

Otros

  • Maria Isabel Hernández Alvarez ( )
  • Rubén Cereijo Téllez ( )

Horas semanales

Teoría
2
Problemas
1.5
Laboratorio
0.5
Aprendizaje dirigido
0
Aprendizaje autónomo
6

Resultados de aprendizaje

Resultados de aprendizaje

Conocimientos

  • K1 - Reconocer los principios básicos de la biología, desde la escala celular a la de organismo, y cómo estos se relacionan con los conocimientos actuales en los campos de la bioinformática, del análisis de datos y del aprendizaje automático; alcanzando así una visión interdisciplinar con especial énfasis en aplicaciones biomédicas.
  • K6 - Reconocer los problemas éticos a los que da lugar el progreso en el conocimiento y la aplicación de los conceptos biológicos y su proceso computacional.

Habilidades

  • S6 - Identificar e interpretar los datos relevantes, dentro del área de estudio, para emitir juicios que incluyan reflexiones de índole social, científica o ética.
  • S8 - Enfrentarse a la toma de decisiones, y defenderlas con argumentos, en la resolución de problemas de las áreas de biología, así como, dentro de los ámbitos adecuados, las ciencias de la salud, las ciencias de la computación y las ciencias experimentales.
  • S9 - Explotar información biológica y biomédica para transformarla en conocimiento; en particular, extraer y analizar información de bases de datos para resolver nuevos problemas biológicos y biomédicos.

Competencias

  • C6 - Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar este conocimiento.
  • C7 - Detectar, desde el propio ámbito de la titulación, las desigualdades por razón de sexo y género en la sociedad; integrar las diferentes necesidades y preferencias por razón de sexo y de género en el diseño de soluciones y resolución de problemas.

Objetivos

  1. Acquisition of the basic knowledge of Biochemistry (Biomolecules and Metabolism)
    Competencias relacionadas: K1, S6, C6,
  2. To use the appropriate tools to obtain information, design experiments, and interpret the results of biochemical processes.
    Competencias relacionadas: K6, S6, S8, S9, C7,

Contenidos

  1. Structure of Proteins
    1.1 Structure of Proteins
    Amino acids and peptide bond.
    Primary, secondary, tertiary, and quaternary structure.
    Native and denatured structure.

    1.2 Protein Folding
    Protein folding, involved forces
  2. Enzymes and Enzyme Kinetics
    2.1. Enzymes
    Concept of enzymatic activity. Measurement. Units of enzymatic activity (kat and U.I.). Specific activity. Turnover number.
    Specificity (substrate and reaction specificity).
    Active site. Concept of catalytic, binding, conformational, and non-essential residues.
    Nomenclature and classification of enzymes (classes and main subclasses). Cofactors. Basic concepts (holoenzyme and apoenzyme). Inorganic cofactors. Organic cofactors (coenzymes): cosubstrates and prosthetic groups. Vitamins. Redox coenzymes (NAD and FAD) and group transfer coenzymes.
    General mechanisms of catalysis: proximity and orientation. Induced fit.

    2.2. Enzyme Kinetics and Regulation
    Chemical kinetics (reaction order and concept of rate constant). Measurement. Initial velocity.
    Michaelis-Menten and Haldane-Briggs equations. Derivation of the equation. Kinetic parameters (KM and Vmax): Meaning and units. Significance of Kcat, KM, and KS. Efficiency index of an enzyme.
    Graphical representations. Linearizations (Lineweaver-Burk and Eadie-Hofstee).
    Inhibition of enzymatic activity. Irreversible. Reversible: types (competitive, non-competitive, and uncompetitive). Graphical representations. Meaning and calculation of KI.
  3. Bioenergetics
    Free energy.
    Endergonic and exergonic reactions. Energy coupling.
    Structure of ATP. Orthophosphate and pyrophosphate hydrolysis.
    Substrate-level phosphorylation. Functions of ATP. Energy charge.
    Redox potential. Conjugate redox pairs.
    Relationship between redox potential and free energy.
  4. Electron Transport Chain and Oxidative Phosphorylation
    Localization and structure of the components of the electron transport chain.
    Chemiosmotic theory of oxidative phosphorylation. Sites of phosphorylation. P/O ratio.
    Energy efficiency of the electron transport chain.
    Coupling and uncoupling. ATP synthase. Respiratory control.
  5. Protein synthesis and degradation
    5.1. Transmission of genetic information in protein synthesis
    Transmission of genetic information: nucleic acids and the central dogma of molecular biology.
    Genetic code: Degeneracy.
    Machinery required for protein translation: Ribosomes, tRNA, aminoacyl-tRNA synthetases.
    5.2. Protein translation
    Initiation, elongation, and termination of translation. Differences between prokaryotes and eukaryotes.
    Energetic and kinetic considerations of protein synthesis.
    5.3. Post-translational modifications
    Post-translational modifications of proteins.
    Glycoconjugates and lipoprotein conjugates.
    5.4. Protein degradation
    Protein turnover.
    Lysosomal mechanisms. Autophagy.
    Cytosolic mechanisms: Calpains. UPS and Ubiquitin.
  6. Metabolism
    6.1. Introduction to metabolism
    Anabolism and catabolism. Types of metabolic reactions.
    Transport of metabolites.
    Food digestion.
    6.2. Carbohydrate metabolism
    Uptake and transport of glucose.
    Glycolysis.
    Fermentations.
    Pentose phosphate pathway.
    Gluconeogenesis.
    Glycogenesis and glycogenolysis.
    6.3. Major pathways of oxidative metabolism
    Acetyl-CoA and pyruvate dehydrogenase complex (PDH).
    Citric acid cycle (Krebs cycle). Overview and reactions.
    Anaplerotic pathways. Amphibolic nature of the citric acid cycle. Mitochondrial transporters.
    6.4. Lipid metabolism
    Lipids and lipoproteins.
    Lipolysis.
    Fatty acids: Transport, uptake, and activation. ß-oxidation.
    Ketone bodies: Synthesis and degradation.
    Lipid synthesis: Lipogenesis, fatty acid esterification, and cholesterol synthesis.
    6.5. Nitrogen metabolism
    Catabolism of amino acids. Fate of amino group nitrogen. Urea cycle.
    Anabolism of amino acids. Biogenic amines.

Actividades

Actividad Acto evaluativo


Teoría
27h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Bioinformatics seminars: exercises and computational work


Objetivos: 2
Teoría
0h
Problemas
20h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Laboratory practices

To determine the specific activity of Lactate Dehydrogenase (LDH) in a liver homogenate sample: 1. Determine the enzymatic activity of LDH in the liver homogenate. 2. Determine the kinetic parameters Vmax and Km of LDH for the substrate pyruvate, in different dilutions of liver homogenate and in the presence of an inhibitor.
Objetivos: 2
Teoría
0h
Problemas
0h
Laboratorio
8h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Independent Learning Hours



Teoría
0h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
90h

Mid term exam



Teoría
0h
Problemas
2h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Synthesis test



Teoría
3h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Metodología docente

The course will combine face-to-face sessions (theory and exercises) and practical laboratory sessions.

Specifically, the subject consists of:

Lectures: full group and split group.
Bioinformatics problem-solving classes: split group.
Laboratory practices: two sessions of four hours each in the laboratory, conducted in both team and individual settings, 8 hours.

Mid exam: two hours.
Synthesis test: three hours.

There will be an oral presentation of a project assigned during the problem-solving sessions.

Método de evaluación

Assessment:

Theoretical and practical knowledge acquired will be evaluated. Attitude in various course activities is also assessed. Attendance to practical sessions is mandatory for evaluation. Exception: Repeat students who have already completed the practicals do not need to repeat them.

Continuous assessment:

Mid exam: 40%.
Synthesis test: 40%.
Practical questionnaire: 10%. Question included in the synthesis test.
Oral presentation: 10%.
A minimum of 5 out of 10 points is required to pass the course.

The Mid exam is eliminatory.

Reassessment:

Open to anyone who has failed or did not attend the assessment.
No minimum grade requirement.
Comprehensive exam. Practical score is retained. The 10% from the oral presentation is not considered.
A minimum of 5 out of 10 points is required to pass the course.

Single assessment:
Theoretical and practical knowledge acquired, as well as interest and attitude in various course activities, will be evaluated. Attendance to practical sessions is mandatory for evaluation. Exception: Repeat students who have already completed the practicals do not need to repeat them.
Practical questionnaire: 10%. Question included in the synthesis test. Oral presentation is not required.
Synthesis test: 90%.

Copying in any exam or plagiarizing in an essay results in failing the course.

Bibliografía

Básica:

Web links