Requisitos
Esta asignatura no tiene requisitos
En esta asignatura se introducen conceptos de álgebra lineal y geometria necesarios para entender los métodos y modelos algebraicos usados durante el grado. Se pone especial émfasis en ejemplos provinentes de la bioinformática, la bioestadística y la biomatemática.
Profesorado
Responsable
-
Marta Casanellas Rius (
)
Otros
-
Iria Posé Lagoa (
)
-
Xavier Povill Clarós (
)
Resultados de aprendizaje
Resultados de aprendizaje
Conocimientos
-
K2 - Identificar los métodos estadísticos y computacionales y los modelos matemáticos que permiten resolver problemas en los campos de la biología molecular, la genómica, la investigación médica y la genética de poblaciones.
-
K3 - Identificar los fundamentos matemáticos, las teorías informáticas, los esquemas algorítmicos y los principios de organización de la información aplicables al modelado de sistemas biológicos y a la resolución eficiente de problemas bioinformáticos mediante el diseño de herramientas computacionales.
Habilidades
-
S3 - Resolver problemas en los campos de la biología molecular, la genómica, la investigación médica y la genética de poblaciones mediante la aplicación de métodos estadísticos y computacionales y modelos matemáticos.
Competencias
-
C3 - Comunicarse de forma oral y escrita con otras personas, en lengua inglesa, sobre los resultados del aprendizaje, de la elaboración del pensamiento y de la toma de decisiones.
-
C6 - Detectar deficiencias en el propio conocimiento y superarlas mediante la reflexión crítica y la elección de la mejor actuación para ampliar este conocimiento.
Objetivos
-
Adquisición de los conocimientos básicos de álgebra lineal (espacios vectoriales, matrices, sistemas lineales, aplicaciones lineales, diagonalización).
Competencias relacionadas:
C3,
C6,
K3,
-
Usar el álgebra lineal para resolver problemas matemáticos y problemas interdisciplinares, en especial del campo de la bioinformàtica
Competencias relacionadas:
K2,
K3,
S3,
-
Aprender a usar programario para resolver problemas de álgebra lineal.
Competencias relacionadas:
K2,
S3,
C6,
Contenidos
-
Matrices i sistemas lineales
Matrices: Operations, elementary transformations, rank, determinant, inverse of a matrix. Linear systems: gaussian elimination, solutions
-
Espacios vectoriales
Vectors, linear combinations, dependency. VEctor spaces, systems of generators, basis. Coordinates and change of basis. Subspaces; intersection and sum,
-
Aplicaciones lineales
Linear maps. Matrices. Kernel and image. Composition and inverse map. Change of basis.
-
Diagonalización
Eigenvalues and eigenvectors; characteristic polynomial; algebraic and geometric multiplicity, diagonalization criteria. Special case of Markov matrices. Applications.
-
Sistemas dinámicos lineales discretos
Definition and Computation of solutions. Applications to biology.
-
Ortogonalidad
Inner product, norm, distance. Orthogonal projection, Quadratic least squares. Spectral theorem. Singular value decomposition and rank approximation.
Actividades
Actividad
Acto evaluativo
Sesiones de teoria
Objetivos:
1
Contenidos:
Sesiones de problemas
Objetivos:
2
3
Contenidos:
Examen parcial
Objetivos:
1
2
Semana:
7
Examen final
Objetivos:
1
2
Semana:
15 (Fuera de horario lectivo)
Entrega de Python
Objetivos:
3
Semana:
12 (Fuera de horario lectivo)
Prueba de Python
Semana:
1
Metodología docente
Las clases de teoría y problemas seran mayoritariamente expositivas. También habrá sesiones de aprenendizaje por problemas y sesiones de ejercicios guiados usando Python.
Método de evaluación
Para la avaluación de la asignatura se tendrá en cuenta la nota del examen parcial (P), la nota del examen final (F), la nota de la entrega de Python (Py) y la nota del Examen de Python (EPy) y se combinarán con la fórmula siguiente:
Nota=max(0.3*P+0.05*Py+0.05EPy+0.6*F;0.05*Py+0.05EPy+0.9*F;F)
Se considera que un alumno no se ha presentado a la asignatura si no se presenta al examen final. Si el estudiante se ha presentado pero ha suspendido, entonces el estudiante podrá realizar el examen de reevaluación (R) y en este caso la nota de la asignatura será el máximo entre R y 0.9*R+0.05*Py+0.05EPy.
Bibliografía
Básica:
-
Linear algebra : a modern introduction -
Poole, David,
Cengage Learning, [2015]. ISBN: 9781285463247
https://discovery.upc.edu/discovery/fulldisplay?docid=alma991004118819706711&context=L&vid=34CSUC_UPC:VU1
-
Linear algebra -
Friedberg, Stephen H; Insel, Arnold J; Spence, Lawrence E,
Pearson Education, cop. 2003. ISBN: 0131202669
https://discovery.upc.edu/discovery/fulldisplay?docid=alma991003754429706711&context=L&vid=34CSUC_UPC:VU1
-
Introduction to linear algebra -
Strang, Gilbert,
Cambridge Press, cop. 2016. ISBN: 9780980232776
https://discovery.upc.edu/discovery/fulldisplay?docid=alma991004101649706711&context=L&vid=34CSUC_UPC:VU1
Complementaria: