Algoritmos, Estructuras de Datos y Bases de Datos

Usted está aquí

Créditos
6
Tipos
Obligatoria
Requisitos
Esta asignatura no tiene requisitos, pero tiene capacidades previas
Departamento
CS;ESSI
This is a fundamental course that covers basic concepts on algorithms, data structures and databases. Even if the objectives of the course are common, this course spans two different tracks: one for students who have a major in Computer Science and another track for the rest.

The methodology is different for both tracks. For the former, it is a project-oriented course focusing on dataOps / MLOps, while for the latter it covers basic material on algorithms, data structures and databases in a guided, yet autonomous learning manner that will allow them to develop complex data systems

Profesorado

Responsable

  • Anna Queralt Calafat ( )
  • Maria Josefina Sierra Santibañez ( )

Otros

  • Oscar Romero Moral ( )

Horas semanales

Teoría
1
Problemas
0
Laboratorio
3
Aprendizaje dirigido
0
Aprendizaje autónomo
7.11

Competencias

Competencias Transversales

Uso solvente de los recursos de información

  • CT4 - Gestionar la adquisicion, la estructuracion, el analisis y la visualizacion de datos e informacion en el ambito de la especialidad y valorar de forma critica los resultados de esta gestion.

Lengua extranjera

  • CT5 - Conocer una tercera lengua, preferentemente el inglés, con un nivel adecuado oral y escrito y en consonancia con las necesidades que tendrán los titulados y tituladas.

Básicas

  • CB6 - Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
  • CB9 - Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Competencias Técnicas Genéricas

Genéricas

  • CG1 - Identificar y aplicar los métodos y procesos de gestión de datos más adecuados para gestionar el ciclo de vida de los datos, incluyendo datos estructurados y no estructurados

Competencias Técnicas

Específicas

  • CE1 - Desarrollar algoritmos eficientes basados en el conocimiento y comprensión de la teoría de la complejidad computacional y las principales estructuras de datos dentro del ámbito de ciencia de datos
  • CE2 - Aplicar los fundamentos de la gestión y procesamiento de datos en un problema de ciencia de datos

Objetivos

  1. To analyse the cost of iterative and recursive algorithms
    Competencias relacionadas: CT4, CT5, CE1,
  2. To review some simple data structures: stacks, queues, lists, and trees
    Competencias relacionadas: CT4, CT5, CE1,
  3. To know, explain, design, analyse, compare and implement the main data structures and algorithms that can be used to implement priority queues
    Competencias relacionadas: CT4, CT5, CE1,
  4. To know, explain, design, analyse, compare and implement the main data structures and algorithms that can be used to implement dictionaries
    Competencias relacionadas: CT4, CT5, CE1,
  5. To know, explain, design, analyse, compare and implement the main data structures and algorithms that can be used to represent graphs and solve classic graph problems such as traversals, topological ordering and shortest paths
    Competencias relacionadas: CT4, CT5, CE1,
  6. To know, understand, explain, analyse and compare some algorithm design techniques: greedy, divide and conquer, and dynamic programming
    Competencias relacionadas: CT4, CT5, CE1,
  7. To be aware of the limits of computation: to understand the definitions of the P and NP classes, the concept of Polynomial-Time reduction, the notion of NP-Completeness, and to know some classic NP-complete problems
    Competencias relacionadas: CT4, CT5, CE1,
  8. Describe what is a database and a database management system
    Competencias relacionadas: CT4, CT5, CE2,
  9. Effectively use the standard Structured Query Language (SQL) to query relational databases
    Competencias relacionadas: CT4, CT5, CE2,
  10. Explain the relational data model, including its data structures, the relational algebra and integrity constraints
    Competencias relacionadas: CT4, CT5, CE2,
  11. Given a set of informational requirements, model the logic schema of a relational database
    Competencias relacionadas: CT4, CT5, CE2,
  12. Identify the main objectives of a database management system query optimizer
    Competencias relacionadas: CT4, CT5, CE2,
  13. Apply data structures, algorithms and database queries to solve a problem in a realistic situation
    Competencias relacionadas: CT5, CG1, CE1, CE2, CB6, CB9,

Contenidos

  1. Basics of Analysis of Algorithms
    Worst case, best case and average case cost analysis. Asymptotic order of growth notations: Big-O, Omega and Theta. Analysis of the correctness and cost of iterative and recursive algorithms.
  2. Simple Data Structures: Review
    Stacks, queues, lists and trees.
  3. Priority Queues
    Operations of priority queues. Implementations with heaps. Heapsort.
  4. Dictionaries
    Operations of dictionaries. Basic implementations: tables and lists. Advanced implementations: hash tables, binary search trees, and AVL trees.
  5. Graphs
    Representations: adjacency matrices, adjacency lists and implicit representations. Depth-first search (DFS). Breadth-first search (BFS). Topological sort. Algorithms for shortest paths. Algorithm for minimum spanning trees.
  6. Algorithm design techniques
    Greedy, divide and conquer, and dynamic programming.
  7. Introduction to NP and Computational Intractability
    Basic introduction to P and NP classes, Polynomial-Time reduction, and NP-completeness. Examples of classic NP-complete problems.
  8. Introduction to databases and database management systems
    Main concepts on databases and database management systems. Relational database management systems.
  9. SQL: Data-definition language and data-manipulation language
    Introduction to the SQL language.
  10. The relational model
    Data structures and integrity constraints.
  11. The relational algebra
    The relational algebra operators and how to build data pipes with them. Notion of semantic and syntactic optimization.
  12. Logical design of relational databases
    Design the logical schema of a database.
  13. Notions of physical design and physical database optimization
    Notions of query optimizer, access plan and cost model.
  14. Data Science-related advanced topics
    Students with a major in Computer Science will investigate on advanced topics specific for data science projects. For example, data
    quality, entity resolution, data integration, etc.

Actividades

Actividad Acto evaluativo


Basic concepts on Algorithms, Data Structures, and Databases

Motivation and main concepts on algorithmics, data structures, and database management systems.
Objetivos: 1 2 8
Contenidos:
Teoría
7.5h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
0h

Partial Exam

For students with a minor in Computer Science, this exam evaluates their knowledge on fundamental concepts of algorithms, data structures and databases.
Objetivos: 3 9 4 6 7 1 2 5 8 10 11 12
Semana: 8
Tipo: examen de teoría
Teoría
3h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
6h

Computer Science for Data Science

Students in the minor track will put in practice all the contents of the course by solving exercises related to algorithms, data structures, and databases. Students in the major track will undertake a project spanning all main phases of a data science. As result, they are asked to develop a quality realistic end-to-end system architecture for a data science project.
Objetivos: 3 9 4 6 7 5 10 11 12 13
Contenidos:
Teoría
0h
Problemas
0h
Laboratorio
40.5h
Aprendizaje dirigido
0h
Aprendizaje autónomo
84h

Final Exam

For students with a minor in Computer Science, this exam evaluates their knowledge on fundamental concepts of algorithms, data structures and databases
Objetivos: 3 9 4 6 7 1 2 5 8 10 11 12
Semana: 14
Tipo: examen de teoría
Teoría
3h
Problemas
0h
Laboratorio
0h
Aprendizaje dirigido
0h
Aprendizaje autónomo
6h

Metodología docente

The students are divided in two tracks: one for students with a minor in computer science (track 1) and another one for students with a major in computer science (track 2).

Students in track 1 will study fundamental concepts in algorithms, data structures and databases. First, additional material to read, study and understand is provided. Lectures focus on the main concepts and those that require some additional explanation to guarantee a proper understanding. Students will have a large bank of self-assessing exercises to practice their understanding on their own. During the course, they will have to solve some mandatory exercises to guarantee a smooth learning process. Additionally, in the face-to-face lectures, the lecturer will solve doubts, go through representative exercises to guarantee a solid understanding and discuss exercises (to be solved during the lecture) with the students.

Students in track 2 will carry out the DS-EtE project and, for them, this course is a project course. There, students must create an end-to-end system architecture to ingest, store, process, learn models and deploy such system for a realistic project with realistic data. The students must develop good practices developing such architecture (what nowadays is known as DataOps / MLOps).

This course has a strong self-learning component and shares the same objectives in both tracks. The lecturers will supervise the students progress during the semester to guarantee a proper progress.

Método de evaluación

Let DBM = Databases midterm exam grade,
DBF = Databases final exam grade,
DBEx = Database exercises to be solved during the course,
ADSM = Algorithms and Data Structures midterm exam grade,
ADSF = Algorithms and Data Structures final exam grade and
ADSEx = Algorithms and Data Structures exercises to be solved during the course,
DS-EtE = DS-EtE project grade

Then,

1) If the student followed track 1 (see methodology) the mark is calculated as follows:
BD = MAX (0.2*DBEx + 0.8*DBM, DBF),
ADS = MAX (0.2*ADSEx + 0.4*ADSM + 0.4*ADSF, ADSF).

ADSDB (final course mark) = 0.5*BD + 0.5*ADS

2) If the student followed track 2 (see methodology) the mark is calculated as follows:

ADSDB (final course mark) = DS-EtE

Bibliografía

Básica:

Complementaria:

Web links

Capacidades previas

This course assumes basic competences in algorithms, data structures and databases. The course is structured to cope with different backgrounds and learning needs but basic knowledge on Computer Science principles is assumed: notions of computer architecture, basic programming constructs and data structures.