Tipos
Obligatoria de especialidad (Ciencia de los Datos)
La asignatura introduce los conceptos de bases de datos orientados a la inteligencia empresarial. En concreto, esto incluye bases de datos multidimensionales y almacenes de datos (DW), así como los procesos ETL (Extract, Transform, Load) y conceptos básicos de cuadros de mando. Serán introducidas las técnicas necesarias para diseñar, implementar, explotar, y mantener los almacenes de datos, con especial atención a datos espacio-temporales.
Se dará una atención especial a los problemas que plantea la integración de datos heterogéneos y la calidad de los datos. Los estudiantes aprenderán cómo definir, medir y mantener la calidad de los datos en el contexto del almacenamiento de datos. Se explican las nociones clásicas de almacén de datos y OLAP: ETL, arquitectura, diseño lógico y conceptual, procesamiento de consultas y optimización. Al final de curso, el estudiante sabrá diseñar, construir y consultar un almacén de datos de manera eficiente, para poder crear gràficas descriptivas.
Objetivos
-
Ser capaz de modelar almacenes de datos multidimensionales y analizar sus datos de forma visual
Competencias relacionadas:
CEE5.1,
CEE5.3,
CG3,
CB6,
CB7,
CB8,
CB9,
CEC2,
CTR3,
-
Ser capaz de aplicar técnicas específicas de diseño físico para sistemas decisionales
Competencias relacionadas:
CEE5.1,
CEE5.3,
CG3,
CB7,
CB8,
CB9,
CEC2,
CTR3,
-
Ser capaz de diseñar e implementar procesos de migración de datos (ETL)
Competencias relacionadas:
CEE5.1,
CEE5.3,
CG3,
CB6,
CB7,
CB8,
CB9,
CEC2,
CTR3,
Contenidos
-
Introducción
Comparación entre sistemas operacionales y decisionales; Metadatos.
-
Arquitectura de almacenamiento de datos.
Factoria de Información Corporativa. DW 2.0
-
Modelado multidimensional, herramientas OLAP
Estructura; restricciones de integridad, operaciones, conceptos avanzados.
-
Diseño físico de bases de datos para consultas analiticas
Star-join e indices-join; Bitmaps; Vistas materializadas; Datos espacio-temporales
-
Extracción, transformación y carga
Calidad de los datos; Integración de datos y esquemas; Gestión de ETL
-
Visualización y análisis descriptivo de la información
Indicadores de Rendimiento Empresarial; Cuadros de Mando
Actividades
Actividad
Acto evaluativo
Clases de teoría
En estas actividades, el profesor introducirá los conceptos teóricos básicos de esta asignatura. Además de las exposiciones, se usarán técnicas de aprendizaje cooperativo. Esto requerirá la participación activa de los estudiantes y, consecuentemente, serán evaluados.
Objetivos:
1
2
3
Contenidos:
Clases de laboratorio
Al estudiante se le pedirá que practique los diferentes conceptos introducidos en las clases teóricas. Esto incluye resolver problemas en el ordenador o en papel.
Objetivos:
1
2
3
Contenidos:
Examen
Examen escrito de los conceptos teóricos introducidos durante el curso.
Objetivos:
1
2
3
Contenidos:
Metodología docente
La asignatura se compone de teoría, y sesiones de laboratorio.
Teoría: Se utilizarán tècnicas de classe invertida que requiren que els estudiante trabaje los materiales multimedia antes de la classe. Las clases de teoría consisten en explicaciones complementarias del profesor y resolución de problemas.
Laboratorio: Se utilizarán algunas herramientas representativas para la aplicación de conceptos teóricos (por ejemplo, Indyco Builder, PotgreSQL, Oracle, Pentaho Data Integration, Tableau). El curso incluye prácticas continuas a través de un proyecto del curso, dividido en tres bloques lógicos: modelado de almacén de datos, integración y migración de datos (ETL), y visualización descriptiva, en los que los estudiantes trabajarán en equipos. Habrá tres entregables del proyecto fuera del horario de clase, pero los estudiantes también serán evaluados individualmente en el aula sobre los conocimientos adquiridos durante cada bloque del proyecto.
Método de evaluación
Final Mark = min(10 ; 60%E + 40%L + 10%P)
L = Weighted average of the marks of the three lab deliverables
E = Final exam
P = Participation in the class
Bibliografía
Básica:
-
Data warehouse design: modern principles and methodologies -
Golfarelli, M.; Rizzi, S,
McGraw Hill, 2009. ISBN: 9780071610391
https://discovery.upc.edu/discovery/fulldisplay?docid=alma991003628169706711&context=L&vid=34CSUC_UPC:VU1&lang=ca
-
Multidimensional databases and data warehousing -
Jensen, C.S.; Pedersen, T.B.; Thomsen, C.W,
Morgan & Claypool, 2010. ISBN: 9781608455379
https://discovery.upc.edu/discovery/fulldisplay?docid=alma991003948319706711&context=L&vid=34CSUC_UPC:VU1&lang=ca
-
Corporate information factory -
Inmon, W.H.; Imhoff, C.; Sousa, R,
John Wiley, 2001. ISBN: 0471399612
https://discovery.upc.edu/discovery/fulldisplay?docid=alma991003133419706711&context=L&vid=34CSUC_UPC:VU1&lang=ca
-
The data warehouse lifecycle toolkit -
Kimball, R. [et al.],
Wiley publishing, 2008. ISBN: 9780470149775
https://discovery.upc.edu/discovery/fulldisplay?docid=alma991003464519706711&context=L&vid=34CSUC_UPC:VU1&lang=ca
-
Database systems: the complete book -
Garcia-Molina, H.; Ullman, J.D.; Widom, J,
Pearson Education Limited, 2013. ISBN: 9781292024479
https://discovery.upc.edu/discovery/fulldisplay?docid=alma991004168919706711&context=L&vid=34CSUC_UPC:VU1&lang=ca
-
Data warehouse systems: design and implentation -
Vaisman, A.; Zimanyi, E,
Springer, 2014. ISBN: 9783642546549
https://discovery.upc.edu/discovery/fulldisplay?docid=alma991004038639706711&context=L&vid=34CSUC_UPC:VU1&lang=ca
Complementaria:
-
Database modeling and design: logical design -
Teorey, T.J.; Nadeau, T.; Lightstone, S, Morgan Kaufmann Publishers/Elsevier ,
2011.
ISBN: 9780123820204
https://discovery.upc.edu/discovery/fulldisplay?docid=alma991004000559706711&context=L&vid=34CSUC_UPC:VU1&lang=ca
-
Physical database design: the database professional's guide to exploiting indexes, views, storage, and more -
Lightstone, S.; Teorey, T.J.; Nadeau, T, Morgan Kaufmann Publishers ,
2007.
ISBN: 9780123693891
https://discovery.upc.edu/discovery/fulldisplay?docid=alma991003252949706711&context=L&vid=34CSUC_UPC:VU1&lang=ca
-
Database management systems -
Ramakrishnan, R.; Gehrke, J, McGraw-Hill ,
2003.
ISBN: 0071151109
https://discovery.upc.edu/discovery/fulldisplay?docid=alma991002855579706711&context=L&vid=34CSUC_UPC:VU1&lang=ca
-
Cost-based oracle fundamentals -
Lewis, J, Apress ,
2006.
ISBN: 9781590596364
https://discovery.upc.edu/discovery/fulldisplay?docid=alma991003403389706711&context=L&vid=34CSUC_UPC:VU1&lang=ca
Capacidades previas
Conocimiento básico de bases de datos relacionales y SQL.
Especificamente, se asumira conocimientos de:
- Diagramas de classes UML
- Algebra relacional
- Consultas SQL
- Vistas relacionales
- Operaciones de árboles-B (inserciones y splits)
- Conceptes bàsics d'optimització física de consultes