This course explores and critically debates the societal impact of recent advances in Data Science. It focuses on the ethical challenges arising from the development and deployment of data-driven technologies, examining their implications for individuals, communities, and institutions.
The course fosters students¿ social and ethical competences by strengthening their sense of social responsibility and enhancing their ability to communicate and argue effectively about complex Data Science issues from an ethical perspective. Through structured debates and critical analysis, students develop the capacity to assess technological developments not only from a technical standpoint, but also in terms of fairness, accountability, transparency, and social good.
The overall aim of the course is to cultivate critical thinking, ethical reflection, and a responsible professional attitude toward the societal role of Data Science.
Profesorado
Responsable
Oscar Romero Moral (
)
Otros
Petar Jovanovic (
)
Horas semanales
Teoría
0.9
Problemas
0
Laboratorio
3
Aprendizaje dirigido
0
Aprendizaje autónomo
6.85
Competencias
Competencias Transversales
Sostenibilidad y compromiso social
CT2 - Conocer y comprender la complejidad de los fenomenos economicos y sociales tipicos de la sociedad del bienestar; capacidad para relacionar el bienestar con la globalizacion y la sostenibilidad; habilidad para utilizar de forma equilibrada y compatible la tecnica, la tecnologia, la economia y la sostenibilidad.
Lengua extranjera
CT5 - Conocer una tercera lengua, preferentemente el inglés, con un nivel adecuado oral y escrito y en consonancia con las necesidades que tendrán los titulados y tituladas.
Perspectiva de género
CT6 - Conocer y comprender, desde el propio ámbito de la titulación, las desigualdades por razón de sexo y género en la sociedad; integrar las diferentes necesidades y preferencias por razón de sexo y de género en el diseño de soluciones y resolución de problemas.
Básicas
CB7 - Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
Competencias Técnicas
Específicas
CE12 - Aplicar la ciencia de datos en proyectos multidisciplinares para resolver problemas en dominios nuevos o poco conocidos y que sean económicamente viables, socialmente aceptables, y de acuerdo con la legalidad vigente
CE13 - Identificar las principales amenazas en el ámbito de la ética y la privacidad de datos en un proyecto de ciencia de datos (tanto en el aspecto de gestión como de análisis de datos) y desarrollar e implantar medidas adecuadas para mitigar dichas amenazas.
Objetivos
Acknowledge the current and future impact of next generation analytical systems on society
Competencias relacionadas:
CT2,
CT5,
CT6,
CE12,
CE13,
CB7,
Ability to study and analyze problems in a critical mood
Competencias relacionadas:
CT2,
CT5,
CT6,
CE12,
CE13,
CB7,
Introduction: Debate Rules and Course Structure
In this first module we will present the course, its structure and methodology.
Ethics and social impact of next generation data-driven systems: Debates
This course is structured around formal debates inspired by debate leagues.
Students argue both sides of ethical dilemmas related to Data Science and data-driven technologies. Each debate explores the societal, legal, and moral implications of real-world data practices. Participants develop evidence-based arguments, rebuttals, and critical questioning skills. The format strengthens ethical reasoning, communication abilities, and responsible professional judgment.
Applied ethical evaluation in Data Science
A mandatory book read that will develop the ethical reasoning of the students
Actividades
ActividadActo evaluativo
Introduction
The course is introduced. We will discuss the course structure, the methodology and the evaluation. Objetivos:1 Contenidos:
Ethics and social impact of next generation data-driven systems: Debates
You must read the available material before the debate. Then, during the debate you will assign to a group: either to defend an idea, or go against it. You may also be asked to moderate the debate. Then, the debate takes place and afterwards, each group needs to write down a report with their conclusions. Objetivos:123456 Contenidos:
There will be 6 face-to-face sessions. The first one introduces the course. The other will be debates. Before each debate, a proposed topic is given, together with some basic material (typically papers) to foste a debate during the next lecture.
The students are meant to read the material, and look for additional stuff, *before* the lecture so that they can better defend their position during the debate.
During the lecture, there will be an organized debate (pro and against groups will be configured as well as a moderator).
After the debate, each group (pro, against and moderator) will be asked to write down their debate conclusions.
The course methodology puts the focus on three main aspects:
- Critical reasoning (with special focus on ethics and social impact),
- Develop soft skills to defend - criticize a position in public,
- Improve the writing skills summarizing an event.
The course methodology wraps up with ta practical project.
Método de evaluación
Each debate entails two main parts:
- (60%) The face-to-face debate Db (this mark is computed from the report written by the moderator group and supervised by the lecturers),
- (40%) The written conclusions Wr.
Thus, each debate mark (Di) is computed as Di = Db*0,6 + Wr*0,4. The final mark will be computed as the average of the debates. Those students not debating will have to write a report and their session mark will be 100% on Wr (i.e., Di = Wr).
The final evaluation of the debates (DM) is the average mark of the debates.
The project (P) is evaluated by means of a deliverable related to it.
The course final mark is calculated as follows: 0,8*DM + 0,2*P.