Saltar al contingut Menu
Map
  • Home
  • Information
  • Contact
  • Map

APPLICATIONS OF COMPUTATIONAL ASTROPHYSICS (AAC)

Credits Dept.
5.625 (4.5 ECTS) UV

Instructors

Person in charge:  (-)
Others:(-)

General goals

In this course, students are expected to apply their knowledge of computational models in astrophysics and supercomputing to solve selected problems. The course is oriented towards the cooperative work of the students.

Specific goals

Knowledges

  1. General description of codes in Astrophysical Hydrodynamics.
  2. General description of codes in Relativistic (magneto-)hydrodynamics.
  3. General description of codes in Cosmology.
  4. Numerical experiments.
  5. Computing some simple astrophysical and cosmological models.

Abilities

  1. To perform numerical experiments using programs provided by the lecturer, or public domain software.
  2. To reproduce some basic tests used for validation of modern Astrophysical numerical codes.
  3. To analyze and represent scientific data.

Competences

  1. Numerical algorithms in Astrophysical Hydrodynamics.
  2. Numerical algorithms in Cosmology.
  3. Numerical algorithms in Relativistic (magneto-)hydrodynamics.
  4. To solve selected problems in computational astrophysics.

Contents

Estimated time (hours):

T P L Alt Ext. L Stu A. time
Theory Problems Laboratory Other activities External Laboratory Study Additional time

1. Introduction.
T      P      L      Alt    Ext. L Stu    A. time Total 
1,0 0 0 0 0 0 0 1,0

2. Numerical algorithms in Astrophysical Hydrodynamics.
T      P      L      Alt    Ext. L Stu    A. time Total 
2,0 0 0 0 0 2,0 0 4,0

3. Numerical algorithms in Cosmology.
T      P      L      Alt    Ext. L Stu    A. time Total 
2,0 0 0 0 0 2,0 0 4,0

4. Numerical algorithms in Relativistic (Magneto-)hydrodynamics.
T      P      L      Alt    Ext. L Stu    A. time Total 
4,0 0 0 0 0 2,0 0 6,0

5. General description of codes for Astrophysical applications and Cosmology.
T      P      L      Alt    Ext. L Stu    A. time Total 
3,0 0 0 0 0 10,0 0 13,0

6. Numerical experiments.
T      P      L      Alt    Ext. L Stu    A. time Total 
2,0 0 18,0 6,0 0 4,0 2,0 32,0
  • Other activities:
    Presentation of the results of the computational laboratory.
  • Other extra activities:
    Menthored work.

7. Simple astrophysical and cosmological models.
T      P      L      Alt    Ext. L Stu    A. time Total 
2,0 0 14,0 12,0 0 8,0 4,0 40,0
  • Other activities:
    Presentation of the results of the computational laboratory.
  • Other extra activities:
    Menthored work.


Total per kind T      P      L      Alt    Ext. L Stu    A. time Total 
16,0 0 32,0 18,0 0 28,0 6,0 100,0
Avaluation additional hours 0
Total work hours for student 100,0

Docent Methodolgy

The practical work will consist on computer practices where the student will use programs provided by the lecturer, public domain programs -appropriately documented- or programs that will be developed by the student.

Evaluation Methodgy

The evaluation of the course will be based on the work developed by the students in the practical part (problems).

Basic Bibliography

  • Chorin, A.J., Marsden, J.E. A Mathematical Introduction to Fluid Mechanics, Springer (Chapter 3), 1990.
  • Landau, L. D. & Lifshitz, E. M. Fluid Mechanics, Pergamon, 1987, 2d ed.
  • LeVeque, R. J. Finite Volume Methods for Hyperbolic Problems., Cambridge U. P., 2002.
  • Shore, S.N. An Introduction to Astrophysical Hydrodynamics , Academic Press, 1992.
  • Toro, E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer, 1999, 2d. ed.

Complementary Bibliography

  • Martí, J.M., Müller, E. Numerical Hydrodynamics in Special Relativity, Living Reviews in Relativity: http://www.livingreviews.org/Articles/Volume2/1999-3marti/index.html, , 1999.
  • Font, J.A. Numerical Hydrodynamics in General Relativity, Living Reviews in Relativity: http://www.livingreviews.org/Articles/Volume3/2000-2font/index.html, , 2000.
  • Kulsrud, R.M. Physics for Astrophysics, Princeton U. P., 2004.

Web links

  1. http://grape.c.u-tokyo.ac.jp/~hachisu/java.shtml


  2. http://www.strw.leidenuniv.nl/~icke/html/VincentPNO.html


  3. http://jupiter.as.arizona.edu/~burrows/scidac/scidac.html


  4. http://www.phy.ornl.gov/tsi


  5. http://www.livingreviews.org/Articles/Volume2/1999-3marti/index.html (Secc. 7.1)


  6. http://www.astro.washington.edu/balick/WFPC2/index.html


  7. http://www.cv.nrao.edu/~abridle/images.htm


  8. http://www.astro.lsa.umich.edu/~phughes/icon_dir/relproj.html


  9. http://www.livingreviews.org/Articles/Volume2/1999-3marti/index.html (Secc. 7.2)


  10. http://science.nasa.gov/newhome/headlines/ast02nov99_1.htm


  11. http://www.mpa-garching.mpg.de/HIGHLIGHT/2000/highlight0003_e.html


  12. http://www.ifa.hawaii.edu/faculty/barnes/saas-fee/chapter-outline.html


  13. http://www.MPA-Garching.MPG.DE/NumCos/


Previous capacities

-  Fortran (basic level). Gnuplot. IDL (basic level).


Compartir

 
logo FIB © Barcelona school of informatics - Contact - RSS
This website uses cookies to offer you the best experience and service. If you continue browsing, it is understood that you accept our cookies policy.
Classic version Mobile version