Thesis offers

You are here

Check offers of other studies and specializations

To date, traditional Deep Learning (DL) solutions (e.g. Feed-forward Neural Networks, Convolutional Neural Networks) have had a major impact in numerous fields, such as Speak Recognition (e.g., Siri, Alexa), Autonomous driving, Computer Vision,etc. It was just recently, however, that a new DL technique called Graph Neural Network (GNN) was introduced, proving to be unprecedentedly accurate to solve problems that are formalized as graphs.

Data Science and Computational Intelligence Knowledge Engineering and Machine Learning

This project is a continuation of 2 previous master thesis. In the framework of the Paris 2024 Olympic Games Weather Project, leaded by TriM company, a big amount of data is being collected either on the sea through real time sensors during trainings and racings or from numerical weather prediction models. These data are being stored into a cloud database. Indeed sailing strategy and performance are strongly related with environmental features such as weather conditions, oceanic current and geography.

Recent advances in the field of Reinforcement Learning (DRL) are rising a lot of attention due to its potential for automatic control and automatization. Breakthroughs from academia and the industry (e.g, Stanford, DeepMind and OpenAI) are demonstrating that DRL is an effective technique to face complex optimization problems with many dimensions and non-linearities. However, to train a DRL agent in large optimization scenarios still remains a challenge due to the computational intensive operations during backpropagation.

This project aims to analyze the prediction capability of Optical Coherence Tomography Angiography (OCTA) images for Diabetes Mellitus (DM) and Diabetic Retinopathy (DR,) in a large high-quality image dataset from previous research projects carried out in the field of Ophthalmology (Fundacio¿ La Marato¿ TV3, Fondo Investigaciones Sanitarias, FIS). OCTA is a newly developed, non-invasive, retinal imaging technique that permits adequate delineation of the perifoveal vascular network. It allows the detection of paramacular areas of capillary non perfusion and/or enlargement of the foveal avascular zone (FAZ), representing an excellent tool for assessment of DR.

The student will have to implement different learning algorithms of Restricted Boltzmann Machine (RBM) neural networks using CUDA, and compare the performance against a standard CPU implementation.

Recent advances in the field of Reinforcement Learning (DRL) are rising a lot of attention due to its potential for automatic control and automatization. Breakthroughs from academia and the industry (e.g, Stanford, DeepMind and OpenAI) are demonstrating that DRL is an effective technique to face complex optimization problems with many dimensions and non-linearities. However, to train a DRL agent in large optimization scenarios still remains a challenge due to the computational intensive operations during backpropagation.

Knowledge Engineering and Machine Learning Hot Topics in AI and Professional Practice

The objective of this project is to explore federated machine learning in TinyML.

Web tracking technologies are extensively used to collect large amounts of personal information (PI), including the things we search, the sites we visit, the people we contact, or the products we buy. Although it is commonly believed that this data is mainly used for targeted advertising, some recent works revealed that it is exploited for many other purposes, such price discrimination, financial credibility, insurance coverage, government surveillance, background scanning or identity theft.

Check offers of other studies and specializations