Saltar al contingut Menu
Mapa
  • Inicio
  • Información
  • Contacto
  • Mapa

ASTROFÍSICA COMPUTACIONAL (AFC)

Créditos Dept.
5.625 (4.5 ECTS) UV

Profesores

Responsable:  (-)
Otros:(-)

Objectivos Generales

In this course, students should gain a basic insight on those (magneto-) hydrodynamic processes governing the formation and evolution of astrophysical objects and cosmological inhomogeneities, paying particular attention to understand the corresponding equations and algorithms to solve them. The course will be rather theoretical and will be the basis for the subject "Applications of Computational Astrophysics".

Objectivos Específicos

Conocimientos

  1. Equations governing the evolution of classical fluids and magneto-fluids.
  2. Equations governing the evolution of relativistic fluids and magneto-fluids.
  3. Equations governing the evolution of cosmological inhomogeneities.
  4. Summary of numerical algorithms for hyperbolic systems of conservation laws.

Habilidades

  1. Understanding that the numerical simulation in Astrophysics can be assimilated to a virtual laboratory that permits to validate theory and observations.
  2. Understanding the basic differences between fluid models valid in distinct astrophysical regimes, ranging from the Newtonian regime to the relativistic, ideal, magneto-hydrodynamics one.
  3. Understanding why the hyperbolic, parabolic or elliptic character of the equations governing the evolution of fluids in different physical regimes requests of properly suited numerical methods for their solution.

Competencias

  1. Gain a general overview of different astrophysical and cosmological scenarios where the numerical modelling plays a fundamental role.

Contenidos

Horas estimadas de:

T P L Alt L Ext. Est O. Ext.
Teoria Problemas Laboratorio Otras actividades Laboratorio externo Estudio Otras horas fuera del horario fijado

1. Introduction.
T      P      L      Alt    L Ext. Est    O. Ext. Total 
1,0 0 0 0 0 0 0 1,0

2. Fluid dynamics in Astrophysics.
T      P      L      Alt    L Ext. Est    O. Ext. Total 
12,0 0 0 0 0 6,0 0 18,0

3. Hyperbolic systems of conservation laws.
T      P      L      Alt    L Ext. Est    O. Ext. Total 
6,0 0 6,0 4,0 0 8,0 2,0 26,0
  • Otras actividades:
    Presentation of the results of the computational laboratory.
  • Otras actividades fuera del horario fijado:
    Menthored work.

4. Finite difference methods in computational fluid dynamics.
T      P      L      Alt    L Ext. Est    O. Ext. Total 
10,0 0 8,0 6,0 0 4,0 2,0 30,0
  • Otras actividades:
    Presentation of the results of the computational laboratory.
  • Otras actividades fuera del horario fijado:
    Menthored work.

5. Astrophysical applications.
T      P      L      Alt    L Ext. Est    O. Ext. Total 
1,0 0 0 10,0 0 10,0 0 21,0
  • Otras actividades:
    4 tematic seminars about modern topics in computational astrophysics.


Total por tipo T      P      L      Alt    L Ext. Est    O. Ext. Total 
30,0 0 14,0 20,0 0 28,0 4,0 96,0
Horas adicionales dedicadas a la evaluación 0
Total horas de trabajo para el estudiante 96,0

Metodología docente

Classes will build up concepts in a structured fashion. The basic theoretical background in the lectures will consolidated by means of practical exercises. The practical work will consist on computer practices where the student will use programs provided by the lecturer, public domain programs -appropriately documented- or programs that will be developed by the student. The contents of the course will be available on-line.

Método de evaluación

The evaluation of the course will be based on the work developed by the students in the practical part (problems).

Bibliografía básica

  • Chorin, A.J., Marsden, J.E. A Mathematical Introduction to Fluid Mechanics, Springer (Chapter 3), 1990.
  • Landau, L. D. & Lifshitz, E. M. Fluid Mechanics, Pergamon, 2d ed., 1987.
  • LeVeque, R. J. Finite Volume Methods for Hyperbolic Problems, Cambridge U. P., 2002.
  • Shore, S.N. An Introduction to Astrophysical Hydrodynamics, Academic Press, 1992.
  • Toro, E. F. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, Springer, 2d ed., 1999.

Bibliografía complementaria

  • Martí, J.M., Müller, E. Numerical Hydrodynamics in Special Relativity, Living Reviews in Relativity: http://www.livingreviews.org/Articles/Volume2/1999-3marti/index.html, , 1999.
  • Font, J.A. Numerical Hydrodynamics in General Relativity, Living Reviews in Relativity: http://www.livingreviews.org/Articles/Volume3/2000-2font/index.html, , 2000.
  • Kulsrud, R. M. Plasma Physics for Astrophysics, Princeton U. P., 2004.

Enlaces web

  1. http://grape.c.u-tokyo.ac.jp/~hachisu/java.shtml


  2. http://www.astro.washington.edu/balick/WFPC2/index.html


  3. http://www.strw.leidenuniv.nl/~icke/html/VincentPNO.html


  4. http://jupiter.as.arizona.edu/~burrows/scidac/scidac.html


  5. http://www.phy.ornl.gov/tsi


  6. Obrir nova finestra http://www.livingreviews.org/Articles/Volume2/1999-3marti/index.html (Sección 7.


  7. http://www.cv.nrao.edu/~abridle/images.htm


  8. http://www.astro.lsa.umich.edu/~phughes/icon_dir/relproj.html


  9. http://www.livingreviews.org/Articles/Volume2/1999-3marti/index.html (Secc. 7.2)


  10. http://science.nasa.gov/newhome/headlines/ast02nov99_1.htm


  11. http://www.mpa-garching.mpg.de/HIGHLIGHT/2000/highlight0003_e.htm


  12. http://www.ifa.hawaii.edu/faculty/barnes/saas-fee/chapter-outline.html


  13. http://www.MPA-Garching.MPG.DE/NumCos/


Capacidades previas

Calculus (differential and integral). Fortran (basic level).


Compartir

 
logo FIB © Facultad de Informática de Barcelona - Contacto - RSS
Esta web utiliza cookies propias para ofrecerle una mejor experiencia y servicio. Si continúa la navegación, entendemos que acepta nuestra política de cookies. Versión clássica Versión móvil